Advanced Search
Article Contents

Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications


doi: 10.1007/s00376-019-9170-2

  • 加载中
  • Figure 1.  ARMS, for fast and accurate calculations of satellite radiances and Jacobians at the top of atmospheres.

    Figure 2.  (a) Simulated brightness temperature spectrum for the HIRAS instrument onboard the FY-3D satellite and comparison with (b) the difference between observations (O) and simulations (B)

    Figure 3.  (a) Simulation accuracy of HIRAS from ARMS and (b) difference between CRTM and ARMS.

    Table 1.  Instrument-specific fast transmittance model developed for ARMS applications (instruments in italic are onboard polar-orbiting satellite systems and the rest are onboard geostationary satellite systems).

    USEuropeChinaJapan
    CrISIASIHIRASAMSR-2
    ATMSAMSUGIIRS
    AMSUMHSMWTS
    MHSAVHRRMWHS
    HIRSMWRI
    MSUMERSI
    SSUMERSI-II
    AVHRR
    MODIS
    AMSR-E
    AIRS
    HSB
    SSM/I
    SSM/T1
    SSM/T2
    SSMIS
    ABISEVERIAGRIAHI
    GOES-ImagerGIIRS
    GOES-SounderGOMIS
    DownLoad: CSV
  • Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteorol. Soc., 137, 690−699, https://doi.org/10.1002/qj.803.
    Bi, L., and P. Yang, 2017: Improved ice particle optical property simulations in the ultraviolet to far-infrared regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 189, 228−237, https://doi.org/10.1016/j.jqsrt.2016.12.007.
    Borbas, E., G. Hulley, W. Feltz, R. Knuteson, and S. Hook, 2017: Combined ASTER and MODIS Emissivity over Land (CAMEL) product. Proc. 21st Int. TOV Study Conf., Darmstadt, Germany.
    Chen, M., and F. Z. Weng, 2016: Modeling land surface roughness effect on soil microwave emission in community surface emissivity model. IEEE Trans. Geosci. Remote Sens., 54, 1716−1726, https://doi.org/10.1109/TGRS.2015.2487885.
    Clough, S. A., M. J. Iacono, and J. L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 761−15 785, https://doi.org/10.1029/92JD01419.
    Cox, C., and W. Munk, 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198−227.
    Evans, K. F., and G. L. Stephens, 1991: A new polarized atmospheric radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 46, 413−423, https://doi.org/10.1016/0022-4073(91)90043-P.
    Han, Y., F. Z. Weng, Q. H. Liu, and P. van Delst, 2007: A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res., 112, D11121, https://doi.org/10.1029/2006JD008208.
    Kan, W., P. Dong, and S. Ding, 2019: Validation and inter-comparison of ARMS fast transmittance model for FY-4A GIIRS with RTTOV. J. Quant. Spectrosc. Radiat. Transfer., in press.
    Lawrence, H., N. Bormann, A. Geer, and S. English, 2017: Uncertainties in the dielectric constant model for seawater in FASTEM and implications for the cal/val of new microwave instruments. Proc. 21st Int. TOV Study Conf., Darmstadt, Germany, 11/29−12/3.
    Le Marshall, J., and Coauthors, 2007: The joint center for satellite data assimilation. Bull. Amer. Meteor. Soc., 88, 329−340, https://doi.org/10.1175/BAMS-88-3-329.
    Liu, Q. H., and F. Z. Weng, 2002: A microwave polarimetric two-stream radiative transfer model. J. Atmos. Sci., 59, 2396−2402, https://doi.org/10.1175/1520-0469(2002)059<2396:AMPTSR>2.0.CO;2.
    Liu, Q. H., and F. Z. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63, 3459−3465, https://doi.org/10.1175/JAS3808.1.
    Liu, Q. H., F. Z. Weng, and S. J. English, 2011: An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens., 49, 1238−1250, https://doi.org/10.1109/TGRS.2010.2064779.
    McMillin, L. M., and H. E. Fleming, 1976: Atmospheric transmittance of an absorbing gas: A computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres. Appl. Opt., 15, 358−363, https://doi.org/10.1364/AO.15.000358.
    Rothman, L. S., and Coauthors, 2013: The HITRAN 2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4−50, https://doi.org/10.1016/j.jqsrt.2013.07.002.
    Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteorol. Soc., 125, 1407−1425, https://doi.org/10.1002/qj.1999.49712555615.
    Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11, 2717−2737, https://doi.org/10.5194/gmd-11-2717-2018.
    Schulz, F. M., K. Stamnes, and F. Weng, 1999: Vdisort: An improved and generalized discrete ordinate method for polarized (vector) radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 61, 105−122, https://doi.org/10.1016/S0022-4073(97)00215-X.
    Shi, J. C., L. M. Jiang, L. X. Zhang, K. S. Chen, J. P. Wigneron, and A. Chanzy, 2005: A parameterized multifrequency-polarization surface emission model. IEEE Trans. Geosci. Remote Sens., 43, 2831−2841, https://doi.org/10.1109/TGRS.2005.857902.
    Weng, F. Z., 1992: A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere−I. theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 47, 19−33, https://doi.org/10.1016/0022-4073(92)90076-G.
    Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799−3807, https://doi.org/10.1175/2007JAS2112.1.
    Weng, F. Z., 2017: Passive Microwave Remote Sensing of the Earth: For Meteorological Applications. Wiley-VCH, 384 pp.
    Weng, F. Z., and N. C. Grody, 2000: Retrieval of ice cloud parameters using a microwave imaging radiometer. J. Atmos. Sci., 57, 1069−1081, https://doi.org/10.1175/1520-0469(2000)057<1069:ROICPU>2.0.CO;2.
    Weng, F. Z., and Q. H. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 2633−2646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.
    Weng, F. Z., B. H. Yan, and N. C. Grody, 2001: A microwave land emissivity model. J. Geophys. Res., 106, 20 115−20 123, https://doi.org/10.1029/2001JD900019.
    Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905−2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.
    Wu, X. Q., and W. L. Smith, 1997: Emissivity of rough sea surface for 8-13 μm: Modeling and verification. Appl. Opt., 36, 2609−2619, https://doi.org/10.1364/AO.36.002609.
    Yan, B. H., and F. Z. Weng, 2011: Effects of microwave desert surface emissivity on AMSU-A data assimilation. IEEE Trans. Geosci. Remote Sens., 49, 1263−1276, https://doi.org/10.1109/TGRS.2010.2091508.
    Yan, B. H., F. Z. Weng, and H. Meng, 2008: Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit. J. Geophys. Res., 113, D19206, https://doi.org/10.1029/2007JD009559.
    Yu, R. C., Y. Zhang, J. J. Wang, J. Li, H. M. Chen, J. D. Gong, and J. Chen, 2019: Recent progress in numerical atmospheric modeling in China. Adv. Atmos. Sci., 36(9), 938−960, https://doi.org/10.1007/s00376-019-8203-1.
    Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res., 118, 11 558−11 576, https://doi.org/10.1002/2013JD020405.
  • [1] XUE Jishan, LIU Yan, 2007: Numerical Weather Prediction in China in the New Century ---Progress, Problems and Prospects, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1099-1108.  doi: 10.1007/s00376-007-1099-1
    [2] Ping YANG, Kuo-Nan LIOU, Lei BI, Chao LIU, Bingqi YI, Bryan A. BAUM, 2015: On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 32-63.  doi: 10.1007/s00376-014-0011-z
    [3] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [4] Qiu Jinhuan, Nobuo Takeuchi, 2001: Effects of Aerosol Vertical Inhomogeneity on the Upwelling Radiance and Satellite Remote Sensing of Surface Reflectance, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 539-553.  doi: 10.1007/s00376-001-0043-z
    [5] Jinqiang ZHANG, Xiang'ao XIA, Hongbin CHEN, 2017: A Comparison of Cloud Layers from Ground and Satellite Active Remote Sensing at the Southern Great Plains ARM Site, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 347-359.  doi: 10.1007/s00376-016-6030-1
    [6] Zhao Bolin, Zhu Yuanjing, Zhang Chengxiang, Zhen Jinming, Zhang WenJan, 1993: Meteorological Satellite TIROS-N TOVS Remote Sensing of Atmospheric Property and Cloud, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 387-392.  doi: 10.1007/BF02656963
    [7] Mu Mu, Duan Wansuo, Wang Jiacheng, 2002: The Predictability Problems in Numerical Weather and Climate Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 191-204.  doi: 10.1007/s00376-002-0016-x
    [8] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [9] Wu Beiying, Lu Daren, 1985: REMOTE SENSING OF RAINFALL PARAMETERS BY LASER SCINTILLATION CORRELATION METHOD -NUMERICAL SIMULATION OF THE RETRIEVING, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 325-333.  doi: 10.1007/BF02677248
    [10] Cheng Minghu, Shi Guangyu, Zhou Xiuji, 1990: Numerical Experiment of Combined Infrared and Ultraviolet Radiation Remote Sensing to Determine the Profile and Total Content of Atmospheric Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 305-319.  doi: 10.1007/BF03179763
    [11] Wu Beiying, Lu Daren, 1984: REMOTE SENSING OF RAINFALL PARAMETERS BY LASER SCINTILLATION CORRELATION METHOD-COMPLETE EQUATION AND NUMERICAL SIMULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 19-39.  doi: 10.1007/BF03187613
    [12] Hye-Ryun OH, Chang-Hoi HO, Yong-Sang CHOI, 2013: Comments on ``Direct Radiative Forcing of Anthropogenic Aerosols over Oceans from Satellite Observation", ADVANCES IN ATMOSPHERIC SCIENCES, 30, 10-14.  doi: 10.1007/s00376-012-1218-5
    [13] Qiu Jinhuan, Lu Daren, 1991: On Lidar Application for Remote Sensing of the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 369-378.  doi: 10.1007/BF02919620
    [14] Sijia LI, Yuan WANG, Huiling YUAN, Jinjie SONG, Xin XU, 2016: Ensemble Mean Forecast Skill and Applications with the T213 Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1297-1305.  doi: 10.1007/s00376-016-6155-2
    [15] Wang Bin, Ji Zhongzhen, 1997: An Economical Consistent Dissipation Operator and Its Applications to the Improvement of AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 53-58.  doi: 10.1007/s00376-997-0043-8
    [16] XUE Jishan, 2004: Progresses of Researches on Numerical Weather Prediction in China: 1999-2002, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 467-474.  doi: 10.1007/BF02915573
    [17] Liu Jinda, 1993: Improving Numerical Weather Prediction in Low Latitudes by Optimizing Diffusion Coefficients, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 345-352.  doi: 10.1007/BF02658140
    [18] Li Chongying, 1985: A NUMERICAL SIMULATION OF TYPHOON GENERATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 72-80.  doi: 10.1007/BF03179739
    [19] Zhao Bolin, 1990: Study on Microwave Remote Sensing of Atmosphere, Cloud and Rain, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 475-490.  doi: 10.1007/BF03342566
    [20] Liu Changsheng, 1988: REMOTE SENSING OF TEMPERATURE PROFILES IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC