Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576,
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413−1426,<1413:OTPIOP>2.0.CO;2.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240−264,<0240:otpivd>;2.
Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World ocean atlas 2001: Objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for Earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26, 31−42,
Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935−938,
Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 73, 76−107,
Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 97, 65−90,
Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 1891−1910,
Fetterer, F., K. Knowles, W. Meier, M. Savoie, and A. Windnagel, 2017: Updated daily. Sea Ice Index, Version 3. [Indicate subset used]. NSIDC, Boulder, Colorado, USA,
Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150−155,<0150:IMIOCM>2.0.CO;2.
Griffies, S. M., and Coauthors, 2009: Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26, 1−46,
Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30(20), 8179−8205,
Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research,
Lee, S. K., R. Lumpkin, M. O. Baringer, C. S. Meinen, M. Goes, S. F. Dong, H. Lopez, and S. G. Yeager, 2019: Global meridional overturning circulation inferred from a data-constrained ocean & sea-ice model. Geophys. Res. Lett., 46, 1521−1530,
Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543−560,
Li, Y. W., H. L. Liu, and P. F. Lin, 2019: The role of thickness diffusivity coefficients in a climate ocean model. PhD dissertation, 142 pp.
Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175−192,
Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., 30(3), 819−840,
Lin, P. F., and Coauthors, 2016: A coupled experiment with LICOM2 as the ocean component of CESM1. Journal of Meteorological Research, 30(1), 76−92,
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0. Acta Meteorologica Sinica, 26(3), 318−329,
Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550−2562,
Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the north pole singularity. Climate Dyn., 12(6), 381−388,
Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126(2), 251−273,
Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16, 1337−1351,
Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154−1158,<1154:OIMBCR>2.0.CO;2.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106,
Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 2079−2087,<2079:PAGOHW>2.0.CO;2.
Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean—sea-ice models (JRA55-do). Ocean Modelling, 130, 79−139,
Xiao, C., 2006: Adoption of a two-step shape-preserving advection scheme in an OGCM and its coupled experiment. M.S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89 pp. (in Chinese)
Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11(4), 479−490,
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li., 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42(4), 877−889, (in Chinese)
Yu, Z. P., H. L. Liu, and P. F. Lin, 2017: A numerical study of the influence of tidal mixing on Atlantic meridional overturning circulation (AMOC) Simulation. Chinese Journal of Atmospheric Sciences, 41(5), 1087−1100, (in Chinese)
Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6(1), 43−61,