Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576, https://doi.org/10.1007/s00376-012-2113-9.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413−1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240−264, https://doi.org/10.1175/1520-0485(2002)032<0240:otpivd>2.0.co;2.
Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World ocean atlas 2001: Objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for Earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26, 31−42, https://doi.org/10.1177/1094342011428141.
Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935−938, https://doi.org/10.1126/science.1141304.
Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 73, 76−107, https://doi.org/10.1016/j.ocemod.2013.10.005.
Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 97, 65−90, https://doi.org/10.1016/j.ocemod.2015.11.007.
Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 1891−1910, https://doi.org/10.1175/JPO2785.1.
Fetterer, F., K. Knowles, W. Meier, M. Savoie, and A. Windnagel, 2017: Updated daily. Sea Ice Index, Version 3. [Indicate subset used]. NSIDC, Boulder, Colorado, USA, https://doi.org/10.7265/N5K072F8.
Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150−155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.
Griffies, S. M., and Coauthors, 2009: Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26, 1−46, https://doi.org/10.1016/j.ocemod.2008.08.007.
Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30(20), 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research, https://doi.org/10.5065/D6KK98Q6.
Lee, S. K., R. Lumpkin, M. O. Baringer, C. S. Meinen, M. Goes, S. F. Dong, H. Lopez, and S. G. Yeager, 2019: Global meridional overturning circulation inferred from a data-constrained ocean & sea-ice model. Geophys. Res. Lett., 46, 1521−1530, https://doi.org/10.1029/2018GL080940.
Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543−560, https://doi.org/10.1007/s00376-012-2140-6.
Li, Y. W., H. L. Liu, and P. F. Lin, 2019: The role of thickness diffusivity coefficients in a climate ocean model. PhD dissertation, 142 pp.
Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175−192, https://doi.org/10.1007/s00376-012-2042-7.
Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., 30(3), 819−840, https://doi.org/10.1007/s00376-012-2137-1.
Lin, P. F., and Coauthors, 2016: A coupled experiment with LICOM2 as the ocean component of CESM1. Journal of Meteorological Research, 30(1), 76−92, https://doi.org/10.1007/s13351-015-5045-3.
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0. Acta Meteorologica Sinica, 26(3), 318−329, https://doi.org/10.1007/s13351-012-0305-y.
Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550−2562, https://doi.org/10.1175/JPO3130.1.
Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the north pole singularity. Climate Dyn., 12(6), 381−388, https://doi.org/10.1007/BF00211684.
Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126(2), 251−273, https://doi.org/10.1006/jcph.1996.0136.
Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16, 1337−1351, https://doi.org/10.1175/1520-0442-16.9.1337.
Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154−1158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.
Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 2079−2087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.
Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean—sea-ice models (JRA55-do). Ocean Modelling, 130, 79−139, https://doi.org/10.1016/j.ocemod.2018.07.002.
Xiao, C., 2006: Adoption of a two-step shape-preserving advection scheme in an OGCM and its coupled experiment. M.S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89 pp. (in Chinese)
Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11(4), 479−490, https://doi.org/10.1007/BF02658169.
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li., 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42(4), 877−889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284. (in Chinese)
Yu, Z. P., H. L. Liu, and P. F. Lin, 2017: A numerical study of the influence of tidal mixing on Atlantic meridional overturning circulation (AMOC) Simulation. Chinese Journal of Atmospheric Sciences, 41(5), 1087−1100, https://doi.org/10.3878/j.issn.1006-9895.1702.16263. (in Chinese)
Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6(1), 43−61, https://doi.org/10.1007/BF02656917.