Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810,
Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 11, 392−400,
Boer, G. J., and Coauthors, 2016: The decadal climate prediction project (DCPP) contribution to CMIP6. Geoscientific Model Development, 9, 3751−3777,
Boer, G. J., W. J. Merryfield, and V. V. Kharin, 2018: Relationships between potential, attainable, and actual skill in a decadal prediction experiment. Climate Dyn., 52, 4813−4831,
Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively-coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15, 2907–2920,
Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res., 119, 13 043−13 066,
Cheng, J. B., Y. H. Zhao, R. Zhi, and G. L. Feng, 2022: Analysis of the July 2021 extreme precipitation in Henan using the novel moisture budget equation. Theor. Appl. Climatol., 149, 15−24,
Chou, C. A., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nature Geoscience, 6, 263−267,
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447−462,
Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res., 118, 6704−6716,
Guo, Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020a: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 37, 1057−1066,
Guo, Y. Y., and Coauthors, 2020b: Simulation and improvements of oceanic circulation and sea ice by the coupled climate system model FGOALS-f3-L. Adv. Atmos. Sci., 37, 1133−1148,
He, B., and Coauthors, 2020a: CAS FGOALS-f3-L model datasets for CMIP6 GMMIP tier-1 and Tier-3 experiments. Adv. Atmos. Sci., 37, 18−28,
He, B., and Coauthors, 2020b: CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett., 13, 582−588,
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049,
Hu, S., B. Wu, T. J. Zhou, and Z. Guo, 2019: A comparison of full-field and anomaly initialization for seasonal prediction of Indian Ocean basin mode. Climate Dyn., 53, 6089−6104,
Hu, S., T. J. Zhou, and B. Wu, 2020: Improved ENSO prediction skill resulting from reduced climate drift in IAP-DecPreS: A comparison of full-field and anomaly initializations. Journal of Advances in Modeling Earth Systems, 12, e2019MS001759,
Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243−256,
Kawamura, R., and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 37−40, https://doi. org/10.2151/sola.2006-010.
Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009−2030,
Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan Pattern. J. Climate, 23, 5085−5108,
Kubota, H., Y. Kosaka, and S. P. Xie, 2016: A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability. International Journal of Climatology, 36, 1575−1589,
Lau, K. M., and H. Weng, 2002: Recurrent Teleconnection Patterns Linking Summertime Precipitation Variability over East Asia and North America. Journal of the Meteorological Society of Japan. Ser. II, 80(6), 1309-1324,
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-Interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, 10.1029/2018MS001506.
Liang, X. D., and Coauthors, 2022: Preliminary investigation on the extreme rainfall event during July 2021 in Henan Province and its multi-scale processes. Chinese Science Bulletin, 67, 997−1011,
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv. Atmos. Sci., 37, 239−249,
Ling, S. N., and R. Y. Lu, 2022: Tropical cyclones over the western north pacific strengthen the East Asia—Pacific pattern during summer. Adv. Atmos. Sci., 39, 249−259,
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3−12,<0003:mtcbot>;2.
Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18, 3928–3950,
Nie, Y. B., and J. Q. Sun, 2022: Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys. Res. Lett., 49, e2021GL097446,
Nitta, T., 1987: Convective activities in the tropical western pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373−390,
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407,
Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 4651−4668,
Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 3355−3372,
Sun, Y. X., G. Chen, and B. K. Tan, 2021: Formation and maintenance mechanisms of the Pacific-Japan pattern as an intraseasonal variability mode. Climate Dyn., 57, 2971−2994,
Su, H., and J. D. Neelin, 2002: Teleconnection mechanism for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59, 2694–2712,
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627,<0608:Afoapi>2.0.Co;2.
Takemura, K., and H. Mukougawa, 2020: Dynamical relationship between quasi-stationary rossby wave propagation along the Asian Jet and Pacific-Japan Pattern in boreal summer. J. Meteor. Soc. Japan, 98, 169−187,
Tao, L., T. M. Li, Y. H. Ke, and J. W. Zhao, 2017: Causes of interannual and interdecadal variations of the summertime Pacific-Japan-like pattern over East Asia. J. Climate, 30, 8845−8864,
Tao, S. Y., and L. X. Chen, 1987: A review of recent research of the east Asian summer monsoon in China. Monsoon Meteorology. Vol. 7, Oxford Monogr. Geol. Geophys., C.-P. Chang and T. N. Krishnamurti, Eds., Oxford Univ. Press, New York, 60–92.
Wang, J. B., Z. P. Wen, R. G. Wu, Y. Y. Guo, and Z. S. Chen, 2016: The mechanism of growth of the low-frequency East Asia–Pacific teleconnection and the triggering role of tropical intraseasonal oscillation. Climate Dyn., 46, 3965−3977,
Wu, B., and T. J. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett., 35, L13701,
Wu, B., X. L. Chen, F. F. Song, Y. Sun, and T. J. Zhou, 2015: Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses. Advances in Meteorology, 2015, 904826,
Wu, B., T. J. Zhou, and T. M. Li, 2016: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer monsoon. J. Climate, 29, 3253−3271,
Wu, B., T. J. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621−9635,
Wu, B., T. J. Zhou, and F. Zheng, 2018: EnOI-IAU initialization scheme designed for decadal climate prediction system IAP-DecPreS. Journal of Advances in Modeling Earth Systems, 10, 342−356,
Xiang, B. Q., B. Wang, W. D. Yu, and S. B. Xu, 2013: How can anomalous western North Pacific Subtropical High intensify in late summer. Geophys. Res. Lett., 40, 2349−2354,
Xu, P. Q., L. Wang, W. Chen, J. Feng, and Y. Y. Liu, 2019: Structural changes in the Pacific-Japan Pattern in the late 1990s. J. Climate, 32, 607−621,
Yamada, K., and R. Kawamura, 2007: Dynamical link between typhoon activity and the PJ teleconnection pattern from early summer to autumn as revealed by the JRA-25 reanalysis. Sola, 3, 65−68,
Yang, W. T., F. Gao, T. H. Xu, N. Z. Wang, J. S. Tu, L. L. Jing, and Y. H. Kong, 2021: Daily flood monitoring based on spaceborne GNSS-R data: A case study on Henan, China. Remote Sensing, 13, 4561,
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li, 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42, 877−889, (in Chinese with English abstract
Zhang, S. C., and Coauthors, 2021: Using CYGNSS data to map flood inundation during the 2021 extreme precipitation in Henan Province, China. Remote Sensing, 13, 5181,
Zhang, S. H., Y. R. X. Chen, Y. L. Luo, B. Liu, G. Y. Ren, T. J. Zhou, C. Martinez‐villalobos, and M. Y. Chang, 2022: Revealing the circulation pattern most conducive to precipitation extremes in Henan Province of North China. Geophys. Res. Lett., 49, e2022GL098034,
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1−20,
Zhou, T. J., and Coauthors, 2020: Development of climate and earth system models in China: Past achievements and new CMIP6 results. J. Meteor. Res., 34, 1−19,
Zhou, T. J., and Coauthors, 2022: 2021: A year of unprecedented climate extremes in eastern Asia, North America, and Europe. Adv. Atmos. Sci., 39, 1598−1607,
Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 7313−7327,
Zhu, Z. W., and T. Li, 2018: Amplified contiguous United States summer rainfall variability induced by East Asian monsoon interdecadal change. Climate Dyn., 50, 3523−3536,