Abdou, W. A.,Coauthors, 2005: Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites. J. Geophys. Res., 110, D10S07, .https://doi.org/10.1029/2004JD004693
Buchard, V., Coauthors, 2014: Evaluation of geos-5 sulfur dioxide simulations during the frostburg, md 2010 field campaign. Atmospheric Chemistry and Physics, 14(4), 1929-1941, .https://doi.org/10.5194/acp-14-1929-2014
Che, H. Z.,Coauthors, 2018: Aerosol optical properties and direct radiative forcing based on measurements from the China aerosol remote sensing network (CARSNET) in eastern China. Atmospheric Chemistry and Physics, 18, 405-425, .https://doi.org/10.5194/acp-18-405-2018
Chen Q.,Y. Yin, L. J. Jin, H. Xiao, and S. C. Zhu, 2011: The effect of aerosol layers on convective cloud microphysics and precipitation. Atmospheric Research, 101, 327-340, .https://doi.org/10.1016/j.atmosres.2011.03.007
Chen S. Y.,J. P. Huang, C. Zhao, Y. Qian, L. R. Leung, and B. Yang, 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res., 118, 797-812, .https://doi.org/10.1002/jgrd.50122
Chen Y.,S. D. Xie, B. Luo, and C. Z. Zhai, 2014: Characteristics and origins of carbonaceous aerosol in the Sichuan Basin, China. Atmos. Environ., 94, 215-223, .https://doi.org/10.1016/j.atmosenv.2014.05.037
Cheng Y.,L. M. Zhao, W. Wan, L. L. Li, T. Yu, and X. F. Gu, 2016: Extracting urban areas in China using DMSP/OLS nighttime light data integrated with biophysical composition information. Journal of Geographical Sciences, 26(3), 325-338, .https://doi.org/10.1007/s11442-016-1271-6
Chin, M., Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461-483. .https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
Chin M.,T. Diehl, P. Ginoux, and W. Malm, 2007: Intercontinental transport of pollution and dust aerosols: Implications for regional air quality. Atmospheric Chemistry and Physics, 7, 5501-5517, .https://doi.org/10.5194/acp-7-5501-2007
Christopher S. A.,J. Wang, 2004: Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China: Implications for satellite aerosol retrievals and radiative forcing calculations. Tellus B, 56, 451-456, .https://doi.org/10.3402/tellusb.v56i5.16462
Colarco P.,A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, .https://doi.org/10.1029/2009JD012820
Collow A. B. M.,M. A. Miller, 2016: The seasonal cycle of the radiation budget and cloud radiative effect in the Amazon rain forest of Brazil. J. Climate, 29, 7703-7722, .https://doi.org/10.1175/JCLI-D-16-0089.1
Deng J. C.,H. M. Xu, 2015: Nonlinear effect on the East Asian summer monsoon due to two coexisting anthropogenic forcing factors in eastern China: An AGCM study. Climate Dyn., 46, 3767-3784, .https://doi.org/10.1007/s00382-015-2803-y
Dickerson, R. R.,Coauthors, 2007: Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport. J. Geophys. Res., 112, D24S90, .https://doi.org/10.1029/2007JD008999
Duan F. K.,X. D. Liu, T. Yu, and H. Cachier, 2004: Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ., 38, 1275-1282, .https://doi.org/10.1016/j.atmosenv.2003.11.037
Dumka U. C.,K. K. Moorthy, R. Kumar, P. Hegde, R. Sagar, P. Pant, N. Singh, and S. S. Babu, 2010: Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmospheric Research, 96, 510-521, .https://doi.org/10.1016/j.atmosres.2009.12.010
Gelaro, R., Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419-5454, .https://doi.org/10.1175/JCLI-D-16-0758.1
Gorin C. A.,J. L. Collett Jr, and P. Herckes, 2006: Wood smoke contribution to winter aerosol in Fresno, CA. Journal of the Air & Waste Management Association, 56, 1584-1590, .https://doi.org/10.1080/10473289.2006.10464558
Hou P.,S. L. Wu, J. L. McCarty, and Y. Gao, 2018: Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmospheric Chemistry and Physics, 18(11), 8173-8182, .https://doi.org/10.5194/acp-18-8173-2018
Hu, W., Coauthors, 2016: Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 16, 13 213-13 230, .https://doi.org/10.5194/acp-16-13213-2016
Huang J.,Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao, 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmospheric Chemistry and Physics, 9, 4011-4021, .https://doi.org/10.5194/acp-9-4011-2009
Huang J. P.,B. Lin, P. Minnis, T. H. Wang, X. Wang, Y. X. Hu, Y. H. Yi, and J. K. Ayers, 2006: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, .https://doi.org/10.1029/2006gl026561
Huang, J. P.,Coauthors, 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, .https://doi.org/10.1029/2007GL029938
Huang J. P.,T. H. Wang, W. C. Wang, Z. Q. Li, and H. R. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res., 119, 11 398-11 416, .https://doi.org/10.1002/2014JD021796
Huang K.,G. S. Zhuang, J. Li, Q. Z. Wang, Y. L. Sun, Y. F. Lin, and J. S. Fu, 2010: Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. J. Geophys. Res., 115, D00K13, .https://doi.org/10.1029/2009JD013145
Jia R.,Y. Z. Liu, B. Chen, Z. J. Zhang, and J. P. Huang, 2015: Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210-219, .https://doi.org/10.1016/j.atmosenv.2015.10.038
Kahn R. A.,B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben, 2005: Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident aerosol robotic network (AERONET) observations. J. Geophys. Res., 110, D10S04, .https://doi.org/10.1029/2004jd004706
Lau K. M.,M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855-864, .https://doi.org/10.1007/s00382-006-0114-z
Lau W. K. M.,M. K. Kim, K. M. Kim, and W. S. Lee, 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environmental Research Letters, 5, 025204, .https://doi.org/10.1088/1748-9326/5/2/025204
Lee W. L.,K. N. Liou, C. L. He, H. C. Liang, T. C. Wang, Q. B. Li, Z. X. Liu, and Q. Yue, 2016: Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations. Theor. Appl. Climatol., 129, 1373-1382, .https://doi.org/10.1007/s00704-016-1860-4
Lee W. S.,R. L. Bhawar, M. K. Kim, and J. Sang, 2013: Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring. Atmos. Environ., 75, 113-122, .https://doi.org/10.1016/j.atmosenv.2013.04.004
Li, L., Coauthors, 2013: Concentration, distribution and variation of polar organic aerosol tracers in Ya'an, a middle-sized city in western China. Atmospheric Research, 120-121, 29-42, .https://doi.org/10.1016/j.atmosres.2012.07.024
Li R.,J. H. Gong, J. P. Zhou, W. Y. Sun, and A. N. Ibrahim, 2015: Multi-satellite observation of an intense dust event over Southwestern China. Aerosol and Air Quality Research, 15, 263-270, .https://doi.org/10.4209/aaqr.2014.02.0031
Liu, Y., Coauthors, 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmospheric Chemistry and Physics, 11, 11 455-11 463, .https://doi.org/10.5194/acp-11-11455-2011
Liu Y.,Y. Sato, R. Jia, Y. Xie, J. Huang, and T. Nakajima, 2015: Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics, 15, 12 581-12 594, .https://doi.org/10.5194/acp-15-12581-2015
Liu Y. Z.,Q. Z. Zhu, J. P. Huang, S. Hua, and R. Jia, 2019: Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmos. Environ., 209, 67-77, .https://doi.org/10.1016/j.atmosenv.2019.04.001
Liu Y. Z.,R. Jia, T. Dai, Y. K. Xie, and G. Y. Shi, 2014: A review of aerosol optical properties and radiative effects. J. Meteor. Res., 28, 1003-1028, .https://doi.org/10.1007/s13351-014-4045-z
Liu, Z., Coauthors, 2008: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO Lidar observations. Atmospheric Chemistry and Physics, 8, 5045-5060, .https://doi.org/10.5194/acp-8-5045-2008
Luo Y. X.,X. B. Zheng, T. L. Zhao, and J. Chen, 2014: A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. International Journal of Climatology, 34, 863-870, .https://doi.org/10.1002/joc.3728
Ma Y.,L. Zhong, B. Wang, W. Ma, X. Chen, and M. Li, 2011: Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in situ data. Atmospheric Chemistry and Physics, 11, 10 461-10 469, .https://doi.org/10.5194/acp-11-10461-2011
Ma, Y. M.,Coauthors, 2017: Monitoring and Modeling the Tibetan Plateau's climate system and its impact on East Asia. Scientific Reports, 7, 44574, .https://doi.org/10.1038/srep44574
Martonchik J. V.,D. J. Diner, R. Kahn, B. Gaitley, B. N. Holben, 2004: Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys. Res. Lett., 31, L16102, .https://doi.org/10.1029/2004GL019807
Myhre, G., Coauthors, 2005: Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmospheric Chemistry and Physics, 5, 1697-1719, .https://doi.org/10.5194/acp-5-1697-2005
Omar A.,J. Tackett, M-H. Kim, M. Vaughan, J. Kar, C. Trepte, D. Winker, 2018: Enhancements to the CALIOP aerosol subtyping and Lidar ratio selection algorithms for level II Version 4. EPJ Web Conf., 176, 02006, .https://doi.org/10.1051/epjconf/201817602006
Ramanathan V.,G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221-227, .https://doi.org/10.1038/ngeo156
Rand les, C. A.,Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 6823-6850, .https://doi.org/10.1175/JCLI-D-16-0609.1
Reichle R. H.,C. S. Draper, Q. Liu, M. Girotto, S. P. P. Mahanama, R. D. Koster, and G. J. M De Lannoy, 2017a: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 2937-2960, .https://doi.org/10.1175/JCLI-D-16-0720.1
Reichle R. H.,Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017b: Land surface precipitation in MERRA-2. J. Climate, 30, 1643-1664, .https://doi.org/10.1175/JCLI-D-16-0570.1
Rosenfeld D.,U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309-1313, .https://doi.org/10.1126/science.1160606
Sakaeda N.,R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, .https://doi.org/10.1029/2010jd015540
Stith, J. L.,Coauthors, 2009: An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res., 114, D05207, .https://doi.org/10.1029/2008JD010924
Streets, D. G.,Coauthors, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, 8809, .https://doi.org/10.1029/2002JD003093
Tao, J., Coauthors, 2013: Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research, 122, 270-283, .https://doi.org/10.1016/j.atmosres.2012.11.004
Tao, J., Coauthors, 2014: Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China. Atmos. Environ., 95, 552-562, .https://doi.org/10.1016/j.atmosenv.2014.07.017
VanCuren R. A.,2003: Asian aerosols in North America: Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States. J. Geophys. Res., 108, 4623, .https://doi.org/10.1029/2003JD003459
Wargan K.,L. Coy, 2016: Strengthening of the tropopause inversion layer during the 2009 sudden stratospheric warming: A MERRA-2 study. J. Atmos. Sci., 73, 1871-1887, .https://doi.org/10.1175/JAS-D-15-0333.1
Wu, G. X.,Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan plateau on Asian climate. Journal of Hydrometeorology, 8, 770-789, .https://doi.org/10.1175/JHM609.1
Xie Y.,Y. Zhang, X. X. Xiong, J. J. Qu, and H. Z. Che, 2011: Validation of MODIS aerosol optical depth product over china using CARSNET measurements. Atmos. Environ., 45(33), 5970-5978, .https://doi.org/10.1016/j.atmosenv.2011.08.002
Xu, C., Coauthors, 2014: Similarities and differences of aerosol optical properties between southern and northern sides of the Himalayas. Atmospheric Chemistry and Physics, 14, 3133-3149, .https://doi.org/10.5194/acp-14-3133-2014
Xu C.,Y. M. Ma, C. You, and Z. K. Zhu, 2015: The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau. Atmospheric Chemistry and Physics, 15, 12 065-12 078, .https://doi.org/10.5194/acp-15-12065-2015
Xu C.,Y. M. Ma, K. Yang, and C. You, 2018: Tibetan plateau impacts on global dust transport in the upper troposphere. J. Climate, 31, 4745-4756, .https://doi.org/10.1175/jcli-d-17-0313.1
Xue H. W.,G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392-406, .https://doi.org/10.1175/2007JAS2428.1
Yang M. X.,F. E. Nelson, N. I. Shiklomanov, D. L. Guo, and G. N. Wan, 2010: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 103, 33-44, .https://doi.org/10.1016/j.earscirev.2010.07.002
Yao, T. D.,Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2, 663-667, .https://doi.org/10.1038/Nclimate1580
Zhang D. M.,D. Liu, T. Luo, Z. E. Wang, and Y. Yin, 2015: Aerosol impacts on cloud thermodynamic phase change over East Asia observed with CALIPSO and CloudSat measurements. J. Geophys. Res., 120, 1490-1501, .https://doi.org/10.1002/2014JD022630
Zhang H.,Z. L. Wang, P. W. Guo, and Z. Z. Wang, 2009: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26, 57-66, .https://doi.org/10.1007/s00376-009-0057-5
Zhang, J. K.,Coauthors, 2018: Characterization, mixing state, and evolution of single particles in a megacity of Sichuan Basin, southwest China. Atmospheric Research, 209, 179-187, .https://doi.org/10.1016/j.atmosres.2018.03.014
Zhou X.,N. F. Bei, H. L. Liu, J. J. Cao, L. Xing, W. F. Lei, L. T. Molina, and G. H. Li, 2017: Aerosol effects on the development of cumulus clouds over the Tibetan plateau. Atmospheric Chemistry and Physics, 17, 7423-7434, .https://doi.org/10.5194/acp-17-7423-2017
Zhu J.,X. G. Xia, J. Wang, J. Q. Zhang, C. Wiedinmyer, J. A. Fisher, and C. A. Keller, 2017: Impact of Southeast Asian smoke on aerosol properties in Southwest China: First comparison of model simulations with satellite and ground observations. J. Geophys. Res., 122, 3904-3919, .https://doi.org/10.1002/2016JD025793
Zhu Q. Z.,Y. Z. Liu, R. Jia, S. Hua, T. B. Shao, and B. Wang, 2018: A numerical simulation study on the impact of smoke aerosols from Russian forest fires on the air pollution over Asia. Atmos. Environ., 182, 263-274, .https://doi.org/10.1016/j.atmosenv.2018.03.052