Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888−2899,
Caniaux, G., J. L. Redelsperger, and J. P. Lafore, 1994: A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci., 51, 2046−2074,<2046:ANSOTS>2.0.CO;2.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585,<0569:CAALSH>2.0.CO;2.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107,<3077:NSOCOD>2.0.CO;2.
Erfani, E., and D. L. Mitchell, 2017: Growth of ice particle mass and projected area during riming. Atmospheric Chemistry and Physics, 17, 1241−1257,
Fan, J. W., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I−Convective updrafts. J. Geophys. Res., 122(17), 9351−9378,
Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997−2017,
Guo, X. L., and G. G. Zheng, 2009: Advances in weather modification from 1997 to 2007 in China. Adv. Atmos. Sci., 26, 240−252,
Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367−381,<0367:PDISIC>2.0.CO;2.
Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457−3491,<3457:OAPOPS>2.0.CO;2.
Heymsfield, A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 2902−2928,
Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568−596,<0568:TMAMSA>2.0.CO;2.
Hogan, R. J., M. D. Behera, E. J. O'Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31, L05106,
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341,
Hou, T. J., H. C. Lei, and Z. X. Hu, 2010: A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmospheric Research, 96, 447−460,
Hou, T. J., H. C. Lei, Z. X. Hu, and J. Zhou, 2014: Aircraft observations of ice particle properties in stratiform precipitating clouds. Advances in Meteorology, 2014, 206352,
Hou, T. J., H. C. Lei, J. F. Yang, Z. X. Hu, and Q. J. Feng, 2016: Investigation of riming within mixed-phase stratiform clouds using weather research and forecasting (WRF) model. Atmospheric Research, 178−179, 291−303,
Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 3108−3121,<3108:AOICIC>2.0.CO;2.
Korolev, A., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 2873−2902,
Lin, Y. L., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 1013−1035,
Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185−2197,
Luo, Y. L., Y. J. Wang, H. Y. Wang, Y. J. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117,
Ma, J. Z., X. L. Guo, C. S. Zhao, Y. J. Zhang, and Z. J. Hu, 2007: Recent progress in cloud physics research in China. Adv. Atmos. Sci., 24, 1121−1137,
McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 3405−3428,
Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975−995,
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−16 682,
Molthan, A. L., and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982−3002,
Molthan, A. L., B. A. Colle, S. E. Yuter, and D. Stark, 2016: Comparisons of modeled and observed reflectivities and fall speeds for snowfall of varied riming degrees during winter storms on Long Island, New York. Mon. Wea. Rev., 144, 4327−4347,
Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528−1548,
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287−311,
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665−1677,
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991−1007,
Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other Schemes. J. Atmos. Sci., 72, 312−339,
Naeger, A. R., B. A. Colle, and A. Molthan, 2017: Evaluation of cloud microphysical schemes for a warm frontal snowband during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 4627−4650,
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071−1107,
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949−2972,<2949:TMAMSA>2.0.CO;2.
Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739−1756,<1739:SRITTA>2.0.CO;2.
Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117−133,<0117:AMSLWA>2.0.CO;2.
Stoelinga, M. T., J. D. Locatelli, and C. P. Woods, 2007: The occurrence of " irregular” ice particles in stratiform clouds. J. Atmos. Sci., 64, 2740−2750,
Woods, C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1−2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 3927−3948,
Woods, C. P., J. D. Locatelli, and M. T. Stoelinga, 2008: The IMPROVE-1 storm of 1−2 February 2001. Part IV: Precipitation enhancement across the melting layer. J. Atmos. Sci., 65, 1087−1092,
Yang, J. F., H. C. Lei, Z. X. Hu, and T. J. Hou, 2014: Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China. Atmospheric Research, 142, 79−90,
Yang, J. F., H. C. Lei, and T. J. Hou, 2017: Observational evidence of high ice concentration in a shallow convective cloud embedded in stratiform cloud over North China. Adv. Atmos. Sci., 34, 509−520,
Zhang, D. M., Z. E. Wang, P. Kollias, A. M. Vogelmann, K. Yang, and T. Luo, 2018: Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmospheric Chemistry and Physics, 18, 4317−4327,
Zhao, Z., and H. C. Lei, 2014: Aircraft observations of liquid and ice in midlatitude mixed-phase clouds. Adv. Atmos. Sci., 31, 604−610,
Zhu, S. C., X. L. Guo, G. X. Lu, and L. J. Guo, 2015: Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J. Atmos. Sci., 72, 2011−2032,