Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 485−14 498,
Ayres, H. C., and J. A. Screen, 2019: Multimodel analysis of the atmospheric response to Antarctic sea ice loss at quadrupled CO2. Geophys. Res. Lett., 46, 9861−9869, https://doi.org/10.1029/2019GL083653.
Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Updated yearly. Sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from http://dx.doi.org/10.5067/8GQ8LZQVL0VL.
Cheng, L. J., and Coauthors, 2022: Another record: Ocean warming continues through 2021 despite La Niña conditions. Adv. Atmos. Sci., 39, 373−385, https://doi.org/10.1007/s00376-022-1461-3.
Dong, X., Y. T. Wang, S. G. Hou, M. H. Ding, B. L. Yin, and Y. L. Zhang, 2020: Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. J. Climate, 33, 4027−4043, https://doi.org/10.1175/JCLI-D-19-0648.1.
Eayrs, C., X. C. Li, M. N. Raphael, and D. M. Holland, 2021: Rapid decline in Antarctic sea ice in recent years hints at future change. Nature Geoscience, 14, 460−464, https://doi.org/10.1038/s41561-021-00768-3.
ECMWF, 2018: ERA5 hourly data on single levels from 1979 to present. Available online from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview.
Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proceedings of the National Academy of Sciences of the United States of America, 111, 8753−8758, https://doi.org/10.1073/pnas.1323922111.
Fogt, R. L., and G. J. Marshall, 2020: The southern annular mode: Variability, trends, and climate impacts across the southern hemisphere. WIREs Climate Change, 11, e652, https://doi.org/10.1002/wcc.652.
Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 1555−1576, https://doi.org/10.1007/s00382-010-0905-0.
Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143, 228−250, https://doi.org/10.1016/j.gloplacha.2016.06.008.
Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5, 872−875, https://doi.org/10.1038/ngeo1627.
Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of arctic and Antarctic sea ice. J. Climate, 29, 5241−5249, https://doi.org/10.1175/JCLI-D-16-0121.1.
Kirkman, C. H., and C. M. Bitz, 2011: The effect of the sea ice freshwater flux on southern ocean temperatures in CCSM3: Deep-ocean warming and delayed surface warming. J. Climate, 24, 2224−2237, https://doi.org/10.1175/2010JCLI3625.1.
Kurtz, N. T., T. Markus, S. L. Farrell, D. L. Worthen, and L. N. Boisvert, 2011: Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. J. Geophys. Res., 116, C04015, https://doi.org/10.1029/2010JC006235.
Lecomte, O., H. Goosse, T. Fichefet, P. R. Holland, P. Uotila, V. Zunz, and N. Kimura, 2016: Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models. Ocean Modelling, 105, 60−70, https://doi.org/10.1016/j.ocemod.2016.08.001.
Liu, J. P., J. A. Curry, and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, https://doi.org/10.1029/2003GL018732.
Maksym, T., 2019: Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Annual Review of Marine Science, 11, 187−213, https://doi.org/10.1146/annurev-marine-010816-060610.
Meier, W. N., J. S. Stewart, H. Wilcox, M. A. Hardman, and D. J. Scott, 2021: Near-Real-Time DMSP SSMIS daily polar gridded sea ice concentrations, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from
Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747−750, https://doi.org/10.1126/science.aag2345.
Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116, 14 414−14 423,
Petty, A. A., R. Kwok, M. Bagnardi, A. Ivanoff, N. Kurtz, J. Lee, J. Wimert, and D. Hancock, 2021. ATLAS/ICESat-2 L3B daily and monthly gridded sea ice freeboard, Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://nsidc.org/data/atl20/versions/3.
Pope, J. O., P. R. Holland, A. Orr, G. J. Marshall, and T. Phillips, 2017: The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett., 44, 6200−6208, https://doi.org/10.1002/2017GL073414.
Raphael, M. N., 2003: Impact of observed sea‐ice concentration on the Southern Hemisphere extratropical atmospheric circulation in summer. J. Geophys. Res., 108, 4687, https://doi.org/10.1029/2002JD003308.
Raphael, M. N., and M. S. Handcock, 2022: A new record minimum for Antarctic sea ice. Nature Reviews Earth & Environment,
Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Annals of the New York Academy of Sciences, 1436, 36−53, https://doi.org/10.1111/nyas.13856.
Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Climate, 30, 4547−4565, https://doi.org/10.1175/JCLI-D-16-0564.1.
Søren, R., and Coauthors, 2011: Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans. Tellus B: Chemical and Physical Meteorology, 63, 823−830, https://doi.org/10.1111/j.1600-0889.2011.00571.x.
Stammerjohn, S., and T. Maksym, 2016: Gaining (and losing) Antarctic sea ice: Variability, trends and mechanisms. Sea Ice, 3rd ed., D. N. Thomas, Ed., John Wiley & Sons, Ltd., 261−289,
Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.
Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.
Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the Southern Antarctic peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: Polar pathfinder daily 25 km EASE-Grid sea ice motion vectors, Version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from
Tschudi, M., W. N. Meier, and J. S. Stewart, 2019b: Quicklook arctic weekly EASE-grid sea ice motion vectors, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://nsidc.org/data/NSIDC-0748/versions/1.
Uotila, P., P. R. Holland, T. Vihma, S. J. Marsland, and N. Kimura, 2014: Is realistic Antarctic sea-ice extent in climate models the result of excessive ice drift. Ocean Modelling, 79, 33−42, https://doi.org/10.1016/j.ocemod.2014.04.004.
Vihma, T., 2014: Effects of arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175−1214, https://doi.org/10.1007/s10712-014-9284-0.
Yu, J.-Y., H. Paek, E. S. Saltzman, and T. Lee, 2015: The early 1990s change in ENSO–PSA–SAM relationships and its impact on southern hemisphere climate. J. Climate, 28, 9393−9408, https://doi.org/10.1175/JCLI-D-15-0335.1.
Yuan, N. M., M. H. Ding, J. Ludescher, and A. Bunde, 2017: Increase of the Antarctic sea ice extent is highly significant only in the Ross Sea. Scientific Reports, 7, 41096, https://doi.org/10.1038/srep41096.
Zhu, J. P., A. H. Xie, X. Qin, Y. T. Wang, B. Xu, and Y. C. Wang, 2021: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere, 12, 217, https://doi.org/10.3390/atmos12020217.