Algarra, I., J. Eiras-Barca, R. Nieto, and L. Gimeno, 2019: Global climatology of nocturnal low-level jets and associated moisture sources and sinks. Atmospheric Research, 229, 39−59,
Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20(3), 351−366,
Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38(5), 283−290,
Bonner, W. D., and J. Peagle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735−744,,0735:DVIBLW.2.3.CO;2.
Chen, S. H., and Y. Lin, 2005: Effects of Moist Froude Number and CAPE on a Conditionally Unstable Flow over a Mesoscale Mountain Ridge. J. Atmos. Sci., 62(2), 331−350,
Chen, G. X., W. M. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: 2. Impact of the diurnal monsoon variability. J. Geophys. Res., 114, D21105,
Chen, G. X., W. M. Sha, T. Iwasaki, and Z. P. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145(8), 3365−3389,
Chen, G. X., Y. Du, and Z. P. Wen, 2021: Seasonal, interannual, and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. J. Climate, 34(11), 4403−4421,
Chen, H. M., R. C. Yu, J. Li, W. H. Yuan, and T. J. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23(4), 905−917,
Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122(10), 2257−2284,<2257:ADSOTL>2.0.CO;2.
Chen, Y. R. X., and Y. L. Luo, 2018: Analysis of paths and sources of moisture for the South China rainfall during the presummer rainy season of 1979−2014. Journal of Meteorological Research, 32(5), 744−757,
Ding, Y. H., and Z. Y. Wang, 2008: A study of rainy seasons in China. Meteor. Atmos. Phys., 100, 121−138,
Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the great plains of the United States. J. Atmos. Sci., 71(10), 3674−3683,
Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146(11), 3827−3844,
Du, Y., and G. X. Chen, 2019a: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147(2), 543−565,
Du, Y., and G. X. Chen, 2019b: Climatology of low-level jets and their impact on rainfall over Southern China during the early-summer rainy season. J. Climate, 32(24), 8813−8833,
Du, Y., Q. H. Zhang, Y. Ying, and Y. M. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90(6), 891−903,
Du, Y., Q. H. Zhang, Y. L. Chen, Y. Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 5747−5767,
Du, Y., R. Rotunno, and Q. H. Zhang, 2015: Analysis of WRF-simulated diurnal boundary layer winds in Eastern China using a simple 1D model. J. Atmos. Sci., 72(2), 714−727,
Du, Y., Y. A. Shen, and G. X. Chen, 2022: Influence of coastal marine boundary layer jets on rainfall in South China. Adv. Atmos. Sci., 39, 782−801,
Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical Study of Nocturnal Low-Level Jets over Gently Sloping Terrain. J. Atmos. Sci., 74(9), 2813−2834,
Fu, P. L., K. F. Zhu, K. Zhao, B. W. Zhou, and M. Xue, 2019: Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains. Adv. Atmos. Sci., 36(1), 15−28,
Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annual Review of Environment and Resources, 41, 117−141,
He, Z. W., Q. H. Zhang, and J. Sun, 2016: The contribution of mesoscale convective systems to intense hourly precipitation events during the warm seasons over central East China. Adv. Atmos. Sci., 33(11), 1233−1239,
Hersbach, H., and Coauthors, 2018: ERA5 hourly data on pressure levels from 1969 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 4 August 2021),
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049,
Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the great plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10(3), 481−507,<0481:IOTGPL>2.0.CO;2.
Hodges, D., and Z. X. Pu, 2019: Characteristics and variations of low-level jets in the contrasting warm season precipitation extremes of 2006 and 2007 over the Southern Great Plains. Theor. Appl. Climatol., 136, 753−771,
Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19(2), 200−205,
Ke, D., and Z. Y. Guan, 2014: Variations in regional mean daily precipitation extremes and related circulation anomalies over Central China during boreal summer. Journal of Meteorological Research, 28(4), 524−539,
Lei, L., J. S. Sun, N. He, Z. Liu, and J. Zeng, 2017: A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta Meteorologica Sinica, 75(5), 685−699, (in Chinese with English abstract
Li, X. Q., and Y. Du, 2021: Statistical relationships between two types of heavy rainfall and low-level jets in South China. J. Climate, 34(21), 8549−8566,
Li, X. Z., W. Zhou, and Y. D. Chen, 2016: Detecting the origins of moisture over Southeast China: Seasonal variation and heavy Rainfall. Adv. Atmos. Sci., 33(3), 319−329,
Liu, X., Y. L. Luo, L. Huang, D. L. Zhang, and Z. Y. Guan, 2020: Roles of double low-level jets in the generation of coexisting inland and coastal heavy rainfall over south China during the presummer rainy season. J. Geophys. Res, 125, e2020JD032890,
Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23(19), 5065−5084,
Nie, Y. B., and J. Q. Sun, 2022: Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys. Res. Lett., 49, e2021GL097446,
Ran, L. K., and Coauthors, 2021: Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan provinces. Chinese Journal of Atmospheric Sciences, 45(6), 1366−1383, (in Chinese with English abstract
Ranalkar, M. R., H. S. Chaudhar, A. Hazra, G. K. Sawaisarje, and S. Pokhrel, 2016: Dynamical features of incessant heavy rainfall event of June 2013 over Uttarakhand, India. Natural Hazards, 80, 1579−1601,
Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the great plains nocturnal low-level jet. J. Atmos. Sci., 73(8), 3037−3057,
Shi, W. R., X. Li, M. J. Zeng, B. Zhang, H. B. Wang, K. F. Zhu, and X. Y. Zhuge, 2021: Multi-model comparison and high-resolution regional model forecast analysis for the “7·20” Zhengzhou severe heavy rain. Transactions of Atmospheric Sciences, 44(5), 688−702, (in Chinese with English abstract
Special Research Team for the ‘‘75.8’’ Heavy Rainstorm, 1977a: Preliminary analysis of cause of the ‘‘75.8’’ heavy rainstorm Part I. Meteor. Monogr., 3, 3−5.
Special Research Team for the ‘‘75.8’’ Heavy Rainstorm, 1977b: Preliminary analysis of causes of the ‘‘75.8’’ heavy rainstorm Part II. Meteor. Monogr., 3, 6−8.
Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9(8), 1698−1711,<1698:IOLLJT>2.0.CO;2.
Su, A. F., X. N. Lü, L. M. Cui, Z. Li, L. Xi, and H. Li, 2021: The basic observational analysis of “7.20” extreme rainstorm in Zhengzhou. Torrential Rain and Disasters, 40(5), 445−454,
Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140(2), 379−397,
Tang, Y. B., J. J. Gan, L. Zhao, and K. Gao, 2006: On the climatology of persistent heavy rainfall events in China. Adv. Atmos. Sci., 23, 678−692,
Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121(4), 1078−1098,<1078:EOECPT>2.0.CO;2.
Wang, H. J., J. H. Sun, S. M. Fu, and Y. C. Zhang, 2021: Typical circulation patterns and associated mechanisms for persistent heavy rainfall events over Yangtze–Huaihe River Valley during 1981−2020. Adv. Atmos. Sci., 38(12), 2167−2182,
Wang, Q., P. M. Zhai, and R. Yu, 2019: Analysis of extreme weather and climate events and circulation characteristics in the Northern Hemisphere in July 2018. Transactions of Atmospheric Sciences, 42(1), 28−35, (in Chinese with English abstract
Wang, X. M., and Y. Liu, 2017: Causes of extreme rainfall in May 2013 over Henan Province: The role of the southwest vortex and low-level jet. Theor. Appl. Climatol., 129, 701−709,
Wang, Y. J., J. P. Wu, J. Peng, X. R. Yang, and D. Z. Liu, 2022: Extreme rainfall simulations with changing resolution of orography based on the Yin-He global spectrum model: A case study of the Zhengzhou 20·7 extreme rainfall event. Atmosphere, 13, 600,
Xia, R. D., and D. L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang mountains in North China. Mon. Wea. Rev., 147(11), 4199−4220,
Xia, R. D., D.-L. Zhang, S. M. Fu, J. F. Yin, and H. Y. Wang, 2022: On the anomalous development of a series of heavy rainfall events from central to North China during 19−21 July 2016. Quart. J. Roy. Meteor. Soc., 148, 272−293,
Xu, H. X., Y. H. Duan, and X. D. Xu, 2022: Indirect effects of binary typhoons on an extreme rainfall event in Henan province, China from 19 to 21 July 2021: 1. Ensemble-based analysis. J. Geophys. Res., 127, e2021JD036265,
Xue, M., X. Luo, K. F. Zhu, Z. Q. Sun, and J. F. Fei, 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res., 123, 5090−5115,
Yang, L., M. F. Liu, J. A. Smith, and F. Q. Tian, 2017: Typhoon Nina and the August 1975 flood over central China. Journal of Hydrometeorology, 18(2), 451−472,
Yin, J. F., H. D. Gu, X. D. Liang, M. Yu, J. S. Sun, Y. X. Xie, F. Li, and C. Wu, 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou city on 20 July 2021. Journal of Meteorological Research, 36(1), 6−25,
Zeng, W. X., G. X. Chen, Y. Du, and Z. P. Wen, 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147(11), 3981−4004,
Zhang, X., H. Yang, X. M. Wang, L. Shen, D. Wang, and H. Li, 2021: Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Transactions of Atmospheric Sciences, 44(5), 672−687,