Algarra, I., J. Eiras-Barca, R. Nieto, and L. Gimeno, 2019: Global climatology of nocturnal low-level jets and associated moisture sources and sinks. Atmospheric Research, 229, 39−59, https://doi.org/10.1016/j.atmosres.2019.06.016.
Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20(3), 351−366, https://doi.org/10.1175/WAF858.1.
Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38(5), 283−290, https://doi.org/10.1175/1520-0477-38.5.283.
Bonner, W. D., and J. Peagle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735−744, https://doi.org/10.1175/1520-0493(1970)098,0735:DVIBLW.2.3.CO;2.
Chen, S. H., and Y. Lin, 2005: Effects of Moist Froude Number and CAPE on a Conditionally Unstable Flow over a Mesoscale Mountain Ridge. J. Atmos. Sci., 62(2), 331−350, https://doi.org/10.1175/JAS-3380.1.
Chen, G. X., W. M. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: 2. Impact of the diurnal monsoon variability. J. Geophys. Res., 114, D21105, https://doi.org/10.1029/2009JD012181.
Chen, G. X., W. M. Sha, T. Iwasaki, and Z. P. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145(8), 3365−3389, https://doi.org/10.1175/MWR-D-16-0423.1.
Chen, G. X., Y. Du, and Z. P. Wen, 2021: Seasonal, interannual, and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. J. Climate, 34(11), 4403−4421, https://doi.org/10.1175/JCLI-D-20-0882.1.
Chen, H. M., R. C. Yu, J. Li, W. H. Yuan, and T. J. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23(4), 905−917, https://doi.org/10.1175/2009JCLI3187.1.
Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122(10), 2257−2284, https://doi.org/10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2.
Chen, Y. R. X., and Y. L. Luo, 2018: Analysis of paths and sources of moisture for the South China rainfall during the presummer rainy season of 1979−2014. Journal of Meteorological Research, 32(5), 744−757, https://doi.org/10.1007/s13351-018-8069-7.
Ding, Y. H., and Z. Y. Wang, 2008: A study of rainy seasons in China. Meteor. Atmos. Phys., 100, 121−138, https://doi.org/10.1007/s00703-008-0299-2.
Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the great plains of the United States. J. Atmos. Sci., 71(10), 3674−3683, https://doi.org/10.1175/JAS-D-14-0060.1.
Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146(11), 3827−3844, https://doi.org/10.1175/MWR-D-18-0101.1.
Du, Y., and G. X. Chen, 2019a: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147(2), 543−565, https://doi.org/10.1175/MWR-D-18-0102.1.
Du, Y., and G. X. Chen, 2019b: Climatology of low-level jets and their impact on rainfall over Southern China during the early-summer rainy season. J. Climate, 32(24), 8813−8833, https://doi.org/10.1175/JCLI-D-19-0306.1.
Du, Y., Q. H. Zhang, Y. Ying, and Y. M. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90(6), 891−903, https://doi.org/10.2151/jmsj.2012-603.
Du, Y., Q. H. Zhang, Y. L. Chen, Y. Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 5747−5767, https://doi.org/10.1175/JCLI-D-13-00571.1.
Du, Y., R. Rotunno, and Q. H. Zhang, 2015: Analysis of WRF-simulated diurnal boundary layer winds in Eastern China using a simple 1D model. J. Atmos. Sci., 72(2), 714−727, https://doi.org/10.1175/JAS-D-14-0186.1.
Du, Y., Y. A. Shen, and G. X. Chen, 2022: Influence of coastal marine boundary layer jets on rainfall in South China. Adv. Atmos. Sci., 39, 782−801, https://doi.org/10.1007/s00376-021-1195-7.
Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical Study of Nocturnal Low-Level Jets over Gently Sloping Terrain. J. Atmos. Sci., 74(9), 2813−2834, https://doi.org/10.1175/JAS-D-17-0013.1.
Fu, P. L., K. F. Zhu, K. Zhao, B. W. Zhou, and M. Xue, 2019: Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains. Adv. Atmos. Sci., 36(1), 15−28, https://doi.org/10.1007/s00376-018-8095-5.
Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annual Review of Environment and Resources, 41, 117−141, https://doi.org/10.1146/annurev-environ-110615-085558.
He, Z. W., Q. H. Zhang, and J. Sun, 2016: The contribution of mesoscale convective systems to intense hourly precipitation events during the warm seasons over central East China. Adv. Atmos. Sci., 33(11), 1233−1239, https://doi.org/10.1007/s00376-016-6034-x.
Hersbach, H., and Coauthors, 2018: ERA5 hourly data on pressure levels from 1969 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 4 August 2021),
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the great plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10(3), 481−507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.
Hodges, D., and Z. X. Pu, 2019: Characteristics and variations of low-level jets in the contrasting warm season precipitation extremes of 2006 and 2007 over the Southern Great Plains. Theor. Appl. Climatol., 136, 753−771, https://doi.org/10.1007/s00704-018-2492-7.
Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19(2), 200−205, https://doi.org/10.3402/tellusa.v19i2.9766.
Ke, D., and Z. Y. Guan, 2014: Variations in regional mean daily precipitation extremes and related circulation anomalies over Central China during boreal summer. Journal of Meteorological Research, 28(4), 524−539, https://doi.org/10.1007/s13351-014-3246-9.
Lei, L., J. S. Sun, N. He, Z. Liu, and J. Zeng, 2017: A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta Meteorologica Sinica, 75(5), 685−699, https://doi.org/10.11676/qxxb2017.054. (in Chinese with English abstract
Li, X. Q., and Y. Du, 2021: Statistical relationships between two types of heavy rainfall and low-level jets in South China. J. Climate, 34(21), 8549−8566, https://doi.org/10.1175/JCLI-D-21-0121.1.
Li, X. Z., W. Zhou, and Y. D. Chen, 2016: Detecting the origins of moisture over Southeast China: Seasonal variation and heavy Rainfall. Adv. Atmos. Sci., 33(3), 319−329, https://doi.org/10.1007/s00376-015-4197-5.
Liu, X., Y. L. Luo, L. Huang, D. L. Zhang, and Z. Y. Guan, 2020: Roles of double low-level jets in the generation of coexisting inland and coastal heavy rainfall over south China during the presummer rainy season. J. Geophys. Res, 125, e2020JD032890, https://doi.org/10.1029/2020JD032890.
Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23(19), 5065−5084, https://doi.org/10.1175/2010JCLI3515.1.
Nie, Y. B., and J. Q. Sun, 2022: Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys. Res. Lett., 49, e2021GL097446, https://doi.org/10.1029/2021GL097446.
Ran, L. K., and Coauthors, 2021: Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan provinces. Chinese Journal of Atmospheric Sciences, 45(6), 1366−1383, https://doi.org/10.3878/j.issn.1006-9895.2109.21160. (in Chinese with English abstract
Ranalkar, M. R., H. S. Chaudhar, A. Hazra, G. K. Sawaisarje, and S. Pokhrel, 2016: Dynamical features of incessant heavy rainfall event of June 2013 over Uttarakhand, India. Natural Hazards, 80, 1579−1601, https://doi.org/10.1007/s11069-015-2040-z.
Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the great plains nocturnal low-level jet. J. Atmos. Sci., 73(8), 3037−3057, https://doi.org/10.1175/JAS-D-15-0307.1.
Shi, W. R., X. Li, M. J. Zeng, B. Zhang, H. B. Wang, K. F. Zhu, and X. Y. Zhuge, 2021: Multi-model comparison and high-resolution regional model forecast analysis for the “7·20” Zhengzhou severe heavy rain. Transactions of Atmospheric Sciences, 44(5), 688−702, https://doi.org/10.13878/j.cnki.dqkxxb.20210823001. (in Chinese with English abstract
Special Research Team for the ‘‘75.8’’ Heavy Rainstorm, 1977a: Preliminary analysis of cause of the ‘‘75.8’’ heavy rainstorm Part I. Meteor. Monogr., 3, 3−5.
Special Research Team for the ‘‘75.8’’ Heavy Rainstorm, 1977b: Preliminary analysis of causes of the ‘‘75.8’’ heavy rainstorm Part II. Meteor. Monogr., 3, 6−8.
Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9(8), 1698−1711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.
Su, A. F., X. N. Lü, L. M. Cui, Z. Li, L. Xi, and H. Li, 2021: The basic observational analysis of “7.20” extreme rainstorm in Zhengzhou. Torrential Rain and Disasters, 40(5), 445−454, https://doi.org/10.3969/j.issn.1004-9045.2021.05.001.
Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140(2), 379−397, https://doi.org/10.1175/MWR-D-11-00041.1.
Tang, Y. B., J. J. Gan, L. Zhao, and K. Gao, 2006: On the climatology of persistent heavy rainfall events in China. Adv. Atmos. Sci., 23, 678−692, https://doi.org/10.1007/s00376-006-0678-x.
Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121(4), 1078−1098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.
Wang, H. J., J. H. Sun, S. M. Fu, and Y. C. Zhang, 2021: Typical circulation patterns and associated mechanisms for persistent heavy rainfall events over Yangtze–Huaihe River Valley during 1981−2020. Adv. Atmos. Sci., 38(12), 2167−2182, https://doi.org/10.1007/s00376-021-1194-8.
Wang, Q., P. M. Zhai, and R. Yu, 2019: Analysis of extreme weather and climate events and circulation characteristics in the Northern Hemisphere in July 2018. Transactions of Atmospheric Sciences, 42(1), 28−35, https://doi.org/10.13878/j.cnki.dqkxxb.20181129001. (in Chinese with English abstract
Wang, X. M., and Y. Liu, 2017: Causes of extreme rainfall in May 2013 over Henan Province: The role of the southwest vortex and low-level jet. Theor. Appl. Climatol., 129, 701−709, https://doi.org/10.1007/s00704-017-2054-4.
Wang, Y. J., J. P. Wu, J. Peng, X. R. Yang, and D. Z. Liu, 2022: Extreme rainfall simulations with changing resolution of orography based on the Yin-He global spectrum model: A case study of the Zhengzhou 20·7 extreme rainfall event. Atmosphere, 13, 600, https://doi.org/10.3390/atmos13040600.
Xia, R. D., and D. L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang mountains in North China. Mon. Wea. Rev., 147(11), 4199−4220, https://doi.org/10.1175/MWR-D-18-0402.1.
Xia, R. D., D.-L. Zhang, S. M. Fu, J. F. Yin, and H. Y. Wang, 2022: On the anomalous development of a series of heavy rainfall events from central to North China during 19−21 July 2016. Quart. J. Roy. Meteor. Soc., 148, 272−293, https://doi.org/10.1002/qj.4204.
Xu, H. X., Y. H. Duan, and X. D. Xu, 2022: Indirect effects of binary typhoons on an extreme rainfall event in Henan province, China from 19 to 21 July 2021: 1. Ensemble-based analysis. J. Geophys. Res., 127, e2021JD036265, https://doi.org/10.1029/2021JD036265.
Xue, M., X. Luo, K. F. Zhu, Z. Q. Sun, and J. F. Fei, 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res., 123, 5090−5115, https://doi.org/10.1029/2018JD028368.
Yang, L., M. F. Liu, J. A. Smith, and F. Q. Tian, 2017: Typhoon Nina and the August 1975 flood over central China. Journal of Hydrometeorology, 18(2), 451−472, https://doi.org/10.1175/JHM-D-16-0152.1.
Yin, J. F., H. D. Gu, X. D. Liang, M. Yu, J. S. Sun, Y. X. Xie, F. Li, and C. Wu, 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou city on 20 July 2021. Journal of Meteorological Research, 36(1), 6−25, https://doi.org/10.1007/s13351-022-1166-7.
Zeng, W. X., G. X. Chen, Y. Du, and Z. P. Wen, 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147(11), 3981−4004, https://doi.org/10.1175/MWR-D-19-0131.1.
Zhang, X., H. Yang, X. M. Wang, L. Shen, D. Wang, and H. Li, 2021: Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Transactions of Atmospheric Sciences, 44(5), 672−687, https://doi.org/10.13878/j.cnki.dqkxxb.20210907001.