Asai, T., 1970a: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48(2), 129−139,
Asai, T., 1970b: Three-dimensional features of thermal convection in a plane couette flow. J. Meteor. Soc. Japan, 48(1), 18−29,
Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34(4), 403−431,
Buizza, R., and Coauthors, 2018: The development and evaluation process followed at ECMWF to upgrade the Integrated Forecasting System (IFS). ECMWF Technical Memoranda 829.
Byrkjedal, Ø., I. Esau, and N. G. Kvamstø, 2008: Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model. Climate Dyn., 30(7−8), 687−701,
Cheng, A. N., K.-M. Xu, and B. Stevens, 2010: Effects of resolution on the simulation of boundary‐layer clouds and the partition of kinetic energy to subgrid scales. Journal of Advances in Modeling Earth Systems, 2(1), 3,
de Boer, G., and Coauthors, 2014: Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 14(1), 427−445,
Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29(1), 91−115,<0091:NIONAU>2.0.CO;2.
Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol., 18, 495−527,
Fan, J. W., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain, 2009: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114(D4), D04205,
Field, P. R., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143(707), 2537−2555,
Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U. S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res., 122(5), 2714−2733,
Glendening, J. W., 1996: Lineal eddy features under strong shear conditions. J. Atmos. Sci., 53(23), 3430−3449,<3430:LEFUSS>2.0.CO;2.
Green, B. W., and F. Q. Zhang, 2015: Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone. Journal of Advances in Modeling Earth Systems, 7, 142−161,
Gryschka, M., and S. Raasch, 2005: Roll convection during a cold air outbreak: A large eddy simulation with stationary model domain. Geophys. Res. Lett., 32(14), L14805,
Harrington, J. Y., and P. Q. Olsson, 2001: An LES study of ice microphysical influences on roll cloud structure and dynamics during off-ice flow. Proc. 6th Conf. on Polar Meteorology and Oceanography, San Diego, CA, American Meteorological Society.
Hong, S. Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93(1), ES6−ES9,
Inoue, J., B. Kosović, and J. A. Curry, 2005: Evolution of a storm-driven cloudy boundary layer in the Arctic. Bound.-Layer Meteorol., 117(2), 213−230,
Inoue, J., J. P. Liu, J. O. Pinto, and J. A. Curry, 2006: Intercomparison of Arctic regional climate models: Modeling clouds and radiation for SHEBA in May 1998. J. Climate, 19(17), 4167−4178,
Jiang, H. L., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57(13), 2105−2117,<2105:CRSOMP>2.0.CO;2.
Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60(4), 607−625,<0607:CRMOTA>2.0.CO;2.
Khanna, S., and J. G. Brasseur, 1998: Three-dimensional buoyancy-and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55(5), 710−743,<0710:TDBASI>2.0.CO;2.
Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135(641), 979−1002,
Kuettner, J., 1959: The band structure of the atmosphere. Tellus, 11(3), 267−294,
Kuettner, J. P., 1971: Cloud bands in the earth’s atmosphere: Observations and theory. Tellus, 23(4−5), 404−426,
Lane, D. E., R. C. J. Somerville, and S. F. Iacobellis, 2000: Sensitivity of cloud and radiation parameterizations to changes in vertical resolution. J. Climate, 13(5), 915−922,<0915:SOCARP>2.0.CO;2.
Lebo, Z. J., and Coauthors, 2017: Challenges for cloud modeling in the context of aerosol-cloud-precipitation interactions. Bull. Amer. Meteor. Soc., 98(8), 1749−1755,
Luo, Y., K.-M. Xu, H. Morrison, and G. McFarquhar, 2008: Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci., 65(4), 1285−1303,
Moeng, C. H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51(7), 999−1022,<0999:ACOSAB>2.0.CO;2.
Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. H. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteorol. Climatol., 55(2), 403−424,
Rao, G. S., and E. M. Agee, 1996: Large eddy simulation of turbulent flow in a marine convective boundary layer with snow. J. Atmos. Sci., 53(1), 86−100,<0086:LESOTF>2.0.CO;2.
Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19(16), 3771−3791,
Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2017: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteorol., 163(1), 41−68,
Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res., 120(15), 7699−7725,
Sikora, T., G. Young, R. Beal, F. Monaldo, and P. Vachon, 2006: Applications of synthetic aperture radar in marine meteorology. Atmosphere Ocean Interactions, 2, 83−105.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp,
Solomon, A., M. D. Shupe, O. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71(2), 574−595,
Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59(23), 3285−3301,<3285:EODSAN>2.0.CO;2.
Tallapragada, V., 2017: A11E-0075: Next generation community based unified global modeling system development and operational implementation strategies at NCEP. AGU 2017 Fall Meeting Abstracts, December 11−15, 2017, Ernest N. Morial Convention Center, New Orleans, Louisiana.
Tjernström, M., J. Sedlar, and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations J. Appl. Meteorol. Climatol., 47(9), 2405−2422,
Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125(4), 505−526,<0505:HCRDTE>2.0.CO;2.
Weckwerth, T. M., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127(9), 2160−2179,<2160:AOSOTE>2.0.CO;2.
Wyngaard, J. C., 2004: Toward numerical modeling in the " terra incognita”. J. Atmos. Sci., 61, 1816−1826,<1816:TNMITT>2.0.CO;2.
Wyser, K., and Coauthors, 2008: An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional climate models. Climate Dyn., 30(2−3), 203−223,
Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83(7), 997−1002,<0997:RSWAMA>2.3.CO;2.
Zhang, F. Q., Y. Q. Sun, L. Magnusson, R. Buizza, S. J. Lin, J. H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 1077−1091,