Alados, I., I. Foyo-Moreno, F. J. Olmo, and L. Alados-Arboledas, 2003: Relationship between net radiation and solar radiation for semi-arid shrub-land. Agricultural and Forest Meteorology, 116(3−4), 221−227, https://doi.org/10.1016/S0168-1923(03)00038-8.
Berbert, M. L. C., and M. H. Costa, 2003: Climate change after tropical deforestation: Seasonal variability of surface albedo and its effects on precipitation change. J. Climate, 16(12), 2099−2104, https://doi.org/10.1175/1520-0442(2003)016<2099:CCATDS>2.0.CO;2.
Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27(6), 779−787, https://doi.org/10.1103/PhysRev.27.779.
Cao, W., Y. Sheng, J. C. Wu, S. T. Wang, and S. Ma, 2018: Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River. Advances in Water Science, 29(1), 1−10, https://doi.org/10.14042/j.cnki.32.1309.2018.01.001. (in Chinese with English abstract
Chen, B. L., S. Q. Luo, S. H. Lü, Y. Zhang, and D. Ma, 2014: Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Climate Research, 59(3), 243−257, https://doi.org/10.3354/cr01217.
Chen, H. S., R. E. Dickinson, Y. J. Dai, and L. M. Zhou, 2011: Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes. Climate Dyn., 36(5-6), 1037−1054, https://doi.org/10.1007/s00382-010-0741-2.
Deng, M. S., and Coauthors, 2020: Responses of soil moisture to regional climate change over the Three Rivers Source Region on the Tibetan Plateau. International Journal of Climatology, 40(4), 2403−2417, https://doi.org/10.1002/joc.6341.
Déry, S. J., and R. D. Brown, 2007: Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett., 34(22), L22504, https://doi.org/10.1029/2007GL031474.
Duan, A. M., G. X. Wu, Y. M. Liu, Y. M. Ma, and P. Zhao, 2012: Weather and climate effects of the Tibetan Plateau. Advances in Atmospheric Sciences, 29(5), 978−992, https://doi.org/10.1007/s00376-012-1220-y.
Eugster, W., and Coauthors, 2000: Land-atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate. Global Change Biology, 6(S1), 84−115, https://doi.org/10.1046/j.1365-2486.2000.06015.x.
Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4(3), 151−155, https://doi.org/10.1038/ngeo1062.
Gao, Q. X., and D. M. Wen, 1996: Climatological calculations of surface sensible heat and its distribution over China. Journal of Nanjing Institute of Meteorology, 19(2), 238−244. (in Chinese with English abstract
Gu, L. L., J. M. Yao, Z. Y. Hu, and L. Zhao, 2015: Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau. Atmospheric Research, 153, 553−564, https://doi.org/10.1016/j.atmosres.2014.10.012.
Guo, D. L., M. X. Yang, and H. J. Wang, 2011a: Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environmental Earth Sciences, 63(1), 97−107, https://doi.org/10.1007/s12665-010-0672-6.
Guo, D. L., M. X. Yang, and H. J. Wang, 2011b: Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrological Processes, 25(16), 2531−2541, https://doi.org/10.1002/hyp.8025.
Han, C. B., Y. M. Ma, X. L. Chen, and Z. B. Su, 2017: Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012. International Journal of Climatology, 37(14), 4757−4767, https://doi.org/10.1002/joc.5119.
Hinkel, K. M., F. Paetzold, F. E. Nelson, and J. G. Bockheim, 2001: Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993−1999. Global and Planetary Change, 29(3−4), 293−309, https://doi.org/10.1016/S0921-8181(01)00096-0.
Hu, G. J., L. Zhao, R. Li, X. D. Wu, T. H. Wu, C. W. Xie, X. F. Zhu, and J. M. Hao, 2020: Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. Theor. Appl. Climatol., 139(3), 983−993, https://doi.org/10.1007/s00704-019-03008-2.
Hu, G. J., and Coauthors, 2019: Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models. Atmospheric Research, 220, 155−168, https://doi.org/10.1016/j.atmosres.2019.01.006.
Ji, G. L., B. W. Gu, and L. Z. Lü, 2002: Characteristics of atmospheric heating field over northern Qinghai-Xizang Plateau. Plateau Meteorology, 21(3), 238−242, https://doi.org/10.3321/j.issn:1000-0534.2002.03.003. (in Chinese with English abstract
Lawrence, D. M., A. G. Slater, V. E. Romanovsky, and D. J. Nicolsky, 2008: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res.: Earth Surf., 113(E2), F02011, https://doi.org/10.1029/2007JF000883.
Li, R., W. Yang, G. L. Ji, and L. Zhao, 2006: The 40a variational characteristics of surface heating field over Wudaoliang the northern Tibetan Plateau. Acta Energiae Solaris Sinica, 26(6), 868−873, https://doi.org/10.3321/j.issn:0254-0096.2005.06.024. (in Chinese with English abstract
Li, R., L. Zhao, Y. J. Ding, W. Yang, Z. Y. Hu, and G. L. Ji, 2007: The features of each components in the surface heat balance equation over Wudaoliang Northern Tibetan Plateau. Journal of Mountain Science, 25(6), 664−670, https://doi.org/10.3969/j.issn.1008-2786.2007.06.004. (in Chinese with English abstract
Li, R., L. Zhao, Y. J. Ding, S. Wang, G. L. Ji, Y. Xiao, G. Y. Liu, and L. C. Sun, 2010: Monthly ratios of PAR to global solar radiation measured at northern Tibetan Plateau, China. Solar Energy, 84(6), 964−973, https://doi.org/10.1016/j.solener.2010.03.005.
Li, R., and Coauthors, 2011: Impact of surface energy variation on thawing processes within active layer of permafrost. Journal of Glaciology and Geocryology, 33(6), 1235−1242. (in Chinese with English abstract
Li, R., L. Zhao, Y. J. Ding, T. H. Wu, Y. Xiao, E. J. Du, G. Y. Liu, and Y. P. Qiao, 2012: Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chinese Science Bulletin, 57(35), 4609−4616, https://doi.org/10.1007/s11434-012-5323-8.
Li, R., and Coauthors, 2013: Temporal and spatial variations of global solar radiation over the Qinghai–Tibetan Plateau during the past 40 years. Theor. Appl. Climatol., 113(3), 573−583, https://doi.org/10.1007/s00704-012-0809-5.
Li, R., and Coauthors, 2019: Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet Plateau. Agricultural and Forest Meteorology, 264, 235−246, https://doi.org/10.1016/j.agrformet.2018.10.011.
Li, X. F., and Coauthors, 2021: Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai--Tibet Plateau. Geosci Model Development, 14(3), 1753−1771, https://doi.org/10.5194/gmd-14-1753-2021.
Ma, D., S. Q. Luo, D. L. Guo, S. H. Lyu, X. H. Meng, B. L. Chen, and L. H. Luo, 2021: Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere. Sciences in Cold and Arid Regions, 13(1), 18−29.
Ma, W. Q., Y. M. Ma, and H. Ishikawa, 2014: Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau. Atmospheric Research, 138, 91−97, https://doi.org/10.1016/j.atmosres.2013.10.020.
Ma, Y., and Coauthors, 2009: Recent advances on the study of atmosphere–land interaction observations on the Tibetan Plateau. Hydrology and Earth System Sciences, 13, 1103−1111, https://doi.org/10.5194/hess-13-1103-2009.
Ma, Y. M., Z. B. Su, T. Koike, T. D. Yao, H. Ishikawa, K. Ueno, and M. Menenti, 2003: On measuring and remote sensing surface energy partitioning over the Tibetan Plateau-from GAME/Tibet to CAMP/Tibet. Physics and Chemistry of the Earth, PartsA/B/C, 28,63−74, https://doi.org/10.1016/S1474-7065(03)00008-1.
Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeorology, 7(5), 937−952, https://doi.org/10.1175/JHM538.1.
Ogunjemiyo, S., G. Parker, and D. Roberts, 2005: Reflections in bumpy terrain: Implications of canopy surface variations for the radiation balance of vegetation. IEEE Geoscience and Remote Sensing Letters, 2(1), 90−93, https://doi.org/10.1109/LGRS.2004.841418.
Pan, B. T., and J. J. Li, 1996: Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change--Ⅲ. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes. Journal of Lanzhou University (Natural Sciences), 32(1), 108−115. (in Chinese with English abstract
Prueger, J. H., W. P. Kustas, L. E. Hipps, and J. L. Hatfield, 2004: Aerodynamic parameters and sensible heat flux estimates for a semi-arid ecosystem. Journal of Arid Environments, 57, 87−100, https://doi.org/10.1016/S0140-1963(03)00090-9.
Qiu, J., 2008: China: The third pole. Nature, 454(7203), 393−396, https://doi.org/10.1038/454393A.
Robinson, D. A., A. Frei, and M. C. Serreze, 1995: Recent variations and regional relationships in Northern Hemisphere snow cover. Annals of Glaciology, 21, 71−76, https://doi.org/10.1017/S0260305500015627.
Schuur, E. A. G., and Coauthors, 2008: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58(8), 701−714, https://doi.org/10.1641/B580807.
Schuur, E. A. G., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520(7546), 171−179, https://doi.org/10.1038/nature14338.
Shen, M. G., S. Piao, X. Q. Chen, S. An, Y. H. Fu, S. P. Wang, N. Cong, and I. A. Janssens, 2016: Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology, 22, 3057−3066, https://doi.org/10.1111/gcb.13301.
Stevens, M. B., J. E. Smerdon, J. F. González-Rouco, M. Stieglitz, and H. Beltrami, 2007: Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations. Geophys. Res. Lett., 34, L02702, https://doi.org/10.1029/2006GL028546.
Strugnell, N. C., and W. Lucht, 2001: An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Climate, 14, 1360−1376, https://doi.org/10.1175/1520-0442(2001)014<1360:AATICS>2.0.CO;2.
Su, Z., 2002: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85−100, https://doi.org/10.5194/hess-6-85-2002.
Tanaka, K., H. Ishikawa, T. Hayashi, I. Tamagawa, and Y. M. Ma, 2001: Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data. J. Meteor. Soc. Japan. Ser. II, 79(1B), 505−517, https://doi.org/10.2151/jmsj.79.505.
Tanaka, K., I. Tamagawa, H. Ishikawa, Y. M. Ma, and Z. Y. Hu, 2003: Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998. J. Hydrol., 283, 169−183, https://doi.org/10.1016/S0022-1694(03)00243-9.
Wang, C. H., and K. Yang, 2018: A new scheme for considering soil water-heat transport coupling based on community land model: Model description and preliminary validation. Journal of Advances in Modeling Earth Systems, 10(4), 927−950, https://doi.org/10.1002/2017MS001148.
Wang, C. H., W. J. Dong, and Z. G. Wei, 2003: Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia. Chinese Journal of Geophysics, 46(3), 309−316, https://doi.org/10.3321/j.issn:0001-5733.2003.03.005. (in Chinese with English abstract
Wang, C. H., K. Yang, and F. M. Zhang, 2020: Impacts of soil freeze-thaw process and snow melting over Tibetan Plateau on Asian summer monsoon system: A review and perspective. Frontiers in Earth Science, 8, 133, https://doi.org/10.3389/FEART.2020.00133.
Wang, J. Y., S. Q. Luo, Z. G. Li, S. Y. Wang, and Z. H. Li, 2019: The freeze-thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River. Theor. Appl. Climatol., 138, 1631−1646, https://doi.org/10.1007/s00704-019-02917-6.
Wang, X. J., G. J. Pang, M. X. Yang, and G. N. Wan, 2016: Effects of modified soil water–heat physics on RegCM4 simulations of climate over the Tibetan Plateau. J. Geophys. Res.: Atmos., 121(12), 6692−6712, https://doi.org/10.1002/2015JD024407.
Wu, G. X., Y. M. Liu, X. Liu, A. M. Duan, and X. Y. Liang, 2005: How the Heating over the Tibetan Plateau Affects the Asian Climate in summer. Chinese Journal of Atmospheric Sciences, 29(1), 47−56. (in Chinese with English abstract
Wu, X. D., L. Zhao, H. B. Fang, Y. G. Zhao, J. M. Smoak, Q. Q. Pang, and Y. J. Ding, 2016: Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region. J. Geophys. Res.: Biogeosci., 121(1), 176−187, https://doi.org/10.1002/2015JG003138.
Xiao, Y., L. Zhao, R. Li, and J. M. Yao, 2011: Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibetan Plateau. Journal of Glaciology and Geocryology, 33(5), 1033−1039. (in Chinese with English abstract
Xu, W. F., L. J. Ma, M. N. Ma, H. C. Zhang, and W. P. Yuan, 2017: Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau. J. Climate, 30(4), 1521−1533, https://doi.org/10.1175/JCLI-D-15-0732.1.
Xue, B. L., L. Wang, X. P. Li, K. Yang, D. L. Chen, and L. T. Sun, 2013: Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol., 492, 290−297, https://doi.org/10.1016/j.jhydrol.2013.04.005.
Yang, C., and Coauthors, 2019b: Estimating surface soil heat flux in permafrost regions using remote sensing-based models on the northern Qinghai-Tibetan Plateau under clear-sky conditions. Remote Sensing, 11(4), 416, https://doi.org/10.3390/rs11040416.
Yang, K., and C. H. Wang, 2019: Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agricultural and Forest Meteorology, 265, 280−294, https://doi.org/10.1016/j.agrformet.2018.11.011.
Yang, K., H. Wu, J. Qin, C. G. Lin, W. J. Tang, and Y. Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112, 79−91, https://doi.org/10.1016/j.gloplacha.2013.12.001.
Yang, M. X., T. D. Yao, L. D. Tian, and K. Ueno, 2000: Comparison of summer monsoon precipitation between northern and southern slope of Tanggula Mountain over the Tibetan Plateau. Quarterly Journal of Applied Meteorology, 11(2), 199−204. (in Chinese with English abstract
Yang, M. X., T. D. Yao, X. H. Gou, N. Hirose, H. Y. Fujii, L. S. Hao, and D. F. Levia, 2007: Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chinese Science Bulletin, 52(1), 136−139, https://doi.org/10.1007/s11434-007-0004-8.
Yang, M. X., X. J. Wang, G. J. Pang, G. N. Wan, and Z. C. Liu, 2019a: The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190, 353−369, https://doi.org/10.1016/j.earscirev.2018.12.018.
Yang, S. H., and Coauthors, 2020: Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma, 377, 114583, https://doi.org/10.1016/j.geoderma.2020.114583.
Yao, J. M., L. Zhao, L. L. Gu, Y. P. Qiao, and K. Q. Jiao, 2011: The surface energy budget in the permafrost region of the Tibetan Plateau. Atmospheric Research, 102(4), 394−407, https://doi.org/10.1016/j.atmosres.2011.09.001.
Yao, J. M., L. Zhao, Y. J. Ding, L. L. Gu, K. Q. Jiao, Y. P. Qiao, and Y. X. Wang, 2008: The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau. Cold Regions Science and Technology, 52, 326−340, https://doi.org/10.1016/j.coldregions.2007.04.001.
Yao, J. M., and Coauthors, 2020: Estimation of surface energy fluxes in the permafrost region of the Tibetan Plateau based on in situ measurements and the surface energy balance system model. International Journal of Climatology, 40(13), 5783−5800, https://doi.org/10.1002/joc.6551.
You, Q. G., X. Xue, F. Peng, S. Y. Dong, and Y. H. Gao, 2017: Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agricultural and Forest Meteorology, 232, 48−65, https://doi.org/10.1016/j.agrformet.2016.08.004.
Zhang, X. C., and Coauthors, 2010: Radiation partitioning and its relation to environmental factors above a meadow ecosystem on the Qinghai-Tibetan Plateau. J. Geophys. Res.: Atmos., 115, D10106, https://doi.org/10.1029/2009JD012373.
Zhang, Y. C., S. G. Hou, and H. X. Pang, 2012: Preliminary study on spatiotemporal pattern of climate change over Tibet plateau during past millennium. Marine Geology & Quaternary Geology, 32(3), 135−146, https://doi.org/10.3724/SP.J.1140.2012.03135. (in Chinese with English abstract
Zhao, L., and Y. Sheng, 2019: Permafrost and its Changes on Qinghai-Tibet Plateau. Science Press, 153−155. (in Chinese)
Zhao, L., G. D. Cheng, S. X. Li, X. M. Zhao, and S. L. Wang, 2000: The freezing and melting process of the permafrost active layer near Wu Dao Liang region on Tibetan Plateau. Chinese Science Bulletin, 45(11), 1205−1211, https://doi.org/10.3321/j.issn:0023-074X.2000.11.018. (in Chinese)
Zhou, Y. W., D. X. Guo, G. Q. Qiu, G. D. Cheng, and S. D. Li, 2000: Geocryology in China. Science Press, 1-62. (in Chinese with English abstract)
Zhu, D., P. Ciais, G. Krinner, F. Maignan, A. G. Puig, and G. Hugelius, 2019: Controls of soil organic matter on soil thermal dynamics in the northern high latitudes. Nature Communications, 10, 3172, https://doi.org/10.1038/s41467-019-11103-1.
Zou, D. F., and Coauthors, 2017: A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere, 11(6), 2527−2542, https://doi.org/10.5194/tc-11-2527-2017.