Camp, J., and Coauthors, 2019: The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145(718), 105−116, https://doi.org/10.1002/qj.3407.
Chen, X. L., T. J. Zhou, P. L. Wu, Z. Guo, and M. H. Wang, 2020: Emergent constraints on future projections of the western North Pacific Subtropical High. Nature Communications, 11, 2802, https://doi.org/10.1038/s41467-020-16631-9.
Chou, L. C., C. P. Chang, and R. T. Williams, 1990: A numerical simulation of the Mei-Yu front and the associated low level jet. Mon. Wea. Rev., 118(7), 1408−1428, https://doi.org/10.1175/1520-0493(1990)118<1408:ansotm>2.0.co;2.
Clark, R. T., L. X. Zhang, and C. F. Li, 2021: Clustering circulation in eastern Asia as a tool for exploring possible mechanisms of extreme events and sources of model error. Climate Dyn., 56(11), 4091−4108, https://doi.org/10.1007/s00382-021-05688-x.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 1082−1103, https://doi.org/10.1175/2008jcli2459.1.
Guo, Y., Y. Wu, B. Wen, W. Huang, K. Ju, Y. Gao, and S. Li, 2020: Floods in China, COVID-19, and climate change. The Lancet Planetary Health, 4, e443−e444, https://doi.org/10.1016/S2542-5196(20)30203-5.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686−5699, https://doi.org/10.1175/jcli3990.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999−2049, https://doi.org/10.1002/qj.3803.
Kim, B. J., R. H. Kripalani, J. H. Oh, and S. E. Moon, 2002: Summer monsoon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Climatol., 72(1), 65−74, https://doi.org/10.1007/s007040200013.
Li, C., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11(9), https://doi.org/10.1088/1748-9326/11/9/094002.
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47(22), e2020GL090342, https://doi.org/10.1029/2020gl090342.
Lu, R. Y., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan. Ser. II, 79, 771−783, https://doi.org/10.2151/jmsj.79.771.
Martin, G. M., N. J. Dunstone, A. A. Scaife, and P. E. Bett, 2020: Predicting June mean rainfall in the middle/lower Yangtze River basin. Adv. Atmos. Sci., 37(1), 29−41, https://doi.org/10.1007/s00376-019-9051-8.
Moss,R.H.,and Coauthors,2008:Towards new scenarios for analysis of emissions,climate change,impacts,and response strategies.Switzerland:IPCC.Available from http://www.ipcc.ch/pdf/supporting-material/expert-meeting-report-scenarios.pdf
O'Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Preethi, B., M. Mujumdar, R. H. Kripalani, A. Prabhu, and R. Krishnan, 2017: Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment. Climate Dyn., 48(7−8), 2489−2505, https://doi.org/10.1007/s00382-016-3218-0.
Qian, W. H., and D. K. Lee, 2000: Seasonal march of Asian summer monsoon. International Journal of Climatology, 20, 1371−1386, https://doi.org/10.1002/1097-0088(200009)20:11<1371::aid-joc538>3.0.co;2-v.
Rodwell, M.J. and Hoskins, B.J., 2001: Subtropical anticyclones and summer monsoons. Journal of Climate, 14(15), pp.3192−3211, https://doi.org/10.1175/1520-0442(2001)014%3C3192:saasm%3E2.0.co;2.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-Baiu rainfall in Early Summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47(22), e2020GL090671, https://doi.org/10.1029/2020gl090671.
Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80(4), 629−638, https://doi.org/10.1175/1520-0477(1999)080<0629:cosasm>2.0.co;2.
Wang, B., Z. W. Wu, J. P. Li, J. Liu, C. P. Chang, Y. H. Ding, and G. X. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21(17), 4449−4463, https://doi.org/10.1175/2008jcli2183.1.
Wu, P. L., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth's hydrological cycle. Nature Climate Change, 3, 807−810, https://doi.org/10.1038/nclimate1932.
Wu, P. L., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, https://doi.org/10.1029/2010gl043730.
Yamazaki, K., D. M. H. Sexton, J. W. Rostron, C. F. McSweeney, J. M. Murphy, and G. R. Harris, 2021: A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections: Part 2: Global performance and future changes. Climate Dyn., 56, 3437−3471, https://doi.org/10.1007/s00382-020-05608-5.
Zhang, L. X., P. L. Wu, T. J. Zhou, and C. Xiao, 2018: ENSO transition from La Niña to El Niño drives prolonged Spring-Summer drought over North China. J. Climate, 31, 3509−3523, https://doi.org/10.1175/jcli-d-17-0440.1.
Zheng, Y. G., J. Chen, G. Q. Ge, and P. J. Zhu, 2008: Typical structure, variety, and multi-scale characteristics of Meiyu front. Acta Meteorologica Sinica, 22(2), 187−201.