Advanced Search
Article Contents

Studies on Non-interpolating Semi-Lagrangian Scheme and Numerical Solution to KdV Equation


doi: 10.1007/BF02656869

  • A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation, and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie’s scheme (1986). The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.
  • [1] LI Xingliang, CHEN Dehui, PENG Xindong, XIAO Feng, CHEN Xiongshan, 2006: Implementation of the Semi-Lagrangian Advection Scheme on a Quasi-Uniform Overset Grid on a Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 792-801.  doi: 10.1007/s00376-006-0792-9
    [2] PENG Xindong, CHANG Yan, LI Xingliang, XIAO Feng, 2010: Application of the Characteristic CIP Method to a Shallow Water Model on the Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 728-740.  doi: 10.1007/s00376-009-9148-6
    [3] HUANG Bo, CHEN Dehui, LI Xingliang, LI Chao, , 2014: Improvement of the Semi-Lagrangian Advection Scheme in the GRAPES Model: Theoretical Analysis and Idealized Tests, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 693-704.  doi: 10.1007/s00376-013-3086-z
    [4] WANG Xiaocong, LIU Yimin, WU Guoxiong, Shian-Jiann LIN, BAO Qing, 2013: The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 89-100.  doi: 10.1007/s00376-012-2039-2
    [5] Wang Yunfeng, Wu Rongsheng, Wang Yuan, Pan Yinong, 1999: Application of Variational Algorithms in Semi-Lagrangian Framework, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 419-430.  doi: 10.1007/s00376-999-0020-5
    [6] Yu Rucong, 1995: Application of a Shape-Preserving Advection Scheme to the Moisture Equation in an E-grid Regional Forecast Model, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 13-19.  doi: 10.1007/BF02661283
    [7] Gao Shouting, Lei Ting, 2000: Streamwise Vorticity Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 339-347.  doi: 10.1007/s00376-000-0027-4
    [8] Ji Zhongzhen, Wang Bin, 1997: Multispectrum Method and the Computation of Vapor Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 563-568.  doi: 10.1007/s00376-997-0074-1
    [9] Liao Dongxian, 1989: A Regional Spectral Nested Shallow Water Equation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 393-402.  doi: 10.1007/BF02659074
    [10] Liao Dongxian, 1990: A Regional Spectral Nested Multilevel Primitive Equation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 27-35.  doi: 10.1007/BF02919165
    [11] LIU Shuhua, YUE Xu, HU Fei, LIU Huizhi, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 245-259.  doi: 10.1007/BF02915711
    [12] YUAN Zhuojian, JIAN Maoqiu, 2003: A Linear Diagnostic Equation for the Nonhydrostatic Vertical Motion W in Severe Storms, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 875-881.  doi: 10.1007/BF02915511
    [13] ZHANG Ming, ZHAO Yanling, HUANG Hong, LIANG Danqing, 2007: The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 147-151.  doi: 10.1007/s00376-007-0147-1
    [14] SUN Shufen, ZHANG Xia, 2004: Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 868-878.  doi: 10.1007/BF02915589
    [15] Zhu Baozhen, Chen Jiabin, Zhang Daomin, Li Zechun, Ge Aifen, 1984: AN OPERATIONAL 5-LAYER PRIMITIVE EQUATION MODEL FOR NORTHERN HEMISPHERE PREDICTION, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 214-233.  doi: 10.1007/BF02678134
    [16] Qiu Jinhuan, 1988: SENSITIVITY OF LIDAR EQUATION SOLUTION TO BOUNDA-RY VALUES AND DETERMINATION OF THE VALUES, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 229-241.  doi: 10.1007/BF02656784
    [17] Yang Jingmei, Qiu Jinhuan, 1992: An Easy Algorithm for Solving Radiative Transfer Equation in Clear Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 483-490.  doi: 10.1007/BF02677081
    [18] Yi Zengxin, T. Warn, 1987: A NUMERICAL METHOD FOR SOLVING THE EVOLUTION EQUATION OF SOLITARY ROSSBY WAVES ON A WEAK SHEAR, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 43-54.  doi: 10.1007/BF02656660
    [19] D. R. Chakraborty, P.S. Salvekar, 1989: An Efficient Accurate Direct Solution of Poisson’s Equation for Computation of Meteorological Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 501-508.  doi: 10.1007/BF02659084
    [20] Peng Yongqing, Yan Shaojin, Wang Tongmei, 1995: A Nonlinear Time-lag Differential Equation Model for Predicting Monthly Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 319-324.  doi: 10.1007/BF02656980

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1996
Manuscript revised: 10 April 1996
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Studies on Non-interpolating Semi-Lagrangian Scheme and Numerical Solution to KdV Equation

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract: A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation, and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie’s scheme (1986). The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return