Advanced Search

Volume 5 Issue 2

Apr.  1988

Article Contents

THE VARIATION OF THE HEAT SOURCES IN EAST CHINA IN THE EARLY SUMMER OF 1984 AND THEIR EFFECTS ON THE LARGE-SCALE CIRCULATION IN EAST ASIA


doi: 10.1007/BF02661291

  • The distributions and daily variations of the apparent heat source (Q1) and the apparent moisture sink (Q2) in East China in the early summer of 1984 have been estimated with the budget calculation method. It has been found that during this time period, there occurred three significant episodes of strong heating that corresponded to the three events of heavy rainfalls prior to, during and post to the onset of mei-yu (plum rains). The peaks of Q1 were generally found at 200 hPa, with the heating rate of 6°-10°C/day observed, while the peaks of Q2 were located at about 700 hPa, with their magnitudes being 12o-20°C/day. The vertical distribution of Q1 and Q2 indicates the importance of eddy vertical flux. In other words, the convective activity plays a very important role in the processes of precipitation in East Asia in the early summer. This result is different from the finding obtained by Luo and Yanai (1984) in their calculation of the case of 1979. They pointed out that in the early summer of 1979 the continuous precipitation dominated the region of East China.Among the three terms of Q1 and Q2, the maximum contribution was made from the adiabatic term, which was caused by strong ascending motion. The adiabatic cooling produced by this term may compensate for the heating created by the condensation process.In addition, it has been revealed that the three significant heating processes were closely related to the seasonal transition from spring to summer in East China. One major synoptic event associated with it showed up in the sudden jump of the upper tropospheric, subtropical jet-stream from 30°N to 40°N. So did the plane-tary frontal zone in East China.
  • [1] Gong-Wang Si, Kuranoshin Kato, Takao Takeda, 1995: The Early Summer Seasonal Change of Large-scale Circulation over East Asia and Its Relation to Change of The Frontal Features and Frontal Rainfall Environment During 1991 Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 151-176.  doi: 10.1007/BF02656829
    [2] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [3] Jong-Kil PARK, LU Riyu, LI Chaofan, Eun Byul KIM, 2012: Interannual Variation of Tropical Night Frequency in Beijing and Associated Large-Scale Circulation Background, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 295-306.  doi: 10.1007/s00376-011-1141-1
    [4] Wang Qianqian, Wang Anyu, Li Xuefeng, Li Shuren, 1986: THE EFFECTS OF THE QINGHAI-XIZANG PLATEAU ON THE MEAN SUMMER CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 72-85.  doi: 10.1007/BF02680046
    [5] Huang Ronghui, Yan Bangliang, 1987: THE PHYSICAL EFFECTS OF TOPOGRAPHY AND HEAT SOURCES ON THE FORMATION AND MAINTENANCE OF THE SUMMER MONSOON OVER ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 13-23.  doi: 10.1007/BF02656658
    [6] WANG Xin, ZHOU Wen, LI Chongyin, WANG Dongxiao, 2012: Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 249-262.  doi: 10.1007/s00376-011-1080-x
    [7] Wu Renguang, Chen Lieting, 1998: Decadal Variation of Summer Rainfall in the Yangtze-Huaihe River Valley and Its Relationship to Atmospheric Circulation Anomalies over East Asia and Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 510-522.  doi: 10.1007/s00376-998-0028-2
    [8] Wang Huijun, Xue Feng, Zhou Guangqing, 2002: The Spring Monsoon in South China and Its Relationship to Large-Scale Circulation Features, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 651-664.  doi: 10.1007/s00376-002-0005-0
    [9] Huang Ronghui, Li Xu, Yuan Chongguang, Lu Riyu, Moon Sung-Euii, Kim Ung-Jun, 1998: Seasonal Prediction Experiments of the Summer Droughts and Floods during the Early 1990’s in East Asia with Numerical Models, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 433-446.  doi: 10.1007/s00376-998-0025-5
    [10] He Jinhai, Li Jun, Zhu Qiangen, 1989: Sensitivity Experiments on Summer Monsoon Circulation Cell in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 120-132.  doi: 10.1007/BF02656923
    [11] Zhao Shengju, 1986: RELATION BETWEEN LONG-DISTANCE MIGRATION OF ORIENTAL ARMYWORMS AND SEASONAL VARIATION OF GENERAL CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 215-226.  doi: 10.1007/BF02682555
    [12] Lin Chunyu, 1985: STABILIZATION OF SUMMER MONSOON IN MIDDLE AND LOWER REACHES OF THE CHANGJIANG RIVER AND SEASONAL TRANSITION OF EAST-ASIAN CIRCULATION PATTERN IN EARLY SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 376-384.  doi: 10.1007/BF02677254
    [13] PU Shuzhen, ZHAO Jinping, YU Weidong, ZHAO Yongping, YANG Bo, 2004: Progress of Large-Scale Air-Sea Interaction Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 383-398.  doi: 10.1007/BF02915566
    [14] JU Jianhua, Lü Junmei, CAO Jie, REN Juzhang, 2005: Possible Impacts of the Arctic Oscillation on the Interdecadal Variation of Summer Monsoon Rainfall in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 39-48.  doi: 10.1007/BF02930868
    [15] Xue Feng, 2001: Interannual to Interdecadal Variation of East Asian Summer Monsoon and its Association with the Global Atmospheric Circulation and Sea Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 567-575.  doi: 10.1007/s00376-001-0045-x
    [16] Marco Y. T. LEUNG, Wen ZHOU, Chi-Ming SHUN, Pak-Wai CHAN, 2018: Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 435-444.  doi: 10.1007/s00376-017-7118-y
    [17] Huang Ronghui, Zeng Qingcun, Yang Dasheng, 1986: THE ADVANCES IN THE STUDIES ON GENERAL CIRCULATION AND LARGE-SCALE DYNAMICS, AND THEIR PROSPECTS FOR THE YEAR OF 2000, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 263-276.  doi: 10.1007/BF02678648
    [18] Chen Longxun, Jin Zuhui, 1984: THE MEDIUM-RANGE VARIATIONS OF THE SUMMER MONSOON CIRCULATION SYSTEM OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 224-245.  doi: 10.1007/BF02678135
    [19] Congwen ZHU, Boqi LIU, Kang XU, Ning JIANG, Kai LIU, 2021: Diversity of the Coupling Wheels in the East Asian Summer Monsoon on the Interannual Time Scale: Challenge of Summer Rainfall Forecasting in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 546-554.  doi: 10.1007/s00376-020-0199-z
    [20] WANG Yi, YAN Zhongwei, 2011: Changes of Frequency of Summer Precipitation Extremes over the Yangtze River in Association with Large-scale Oceanic-atmospheric Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1118-1128.  doi: 10.1007/s00376-010-0128-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1988
Manuscript revised: 10 April 1988
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

THE VARIATION OF THE HEAT SOURCES IN EAST CHINA IN THE EARLY SUMMER OF 1984 AND THEIR EFFECTS ON THE LARGE-SCALE CIRCULATION IN EAST ASIA

  • 1. Academy of Meteorological Sciences, State Meteorological Administration, Beijing,Institute of Typhoon of Shanghai, SMA

Abstract: The distributions and daily variations of the apparent heat source (Q1) and the apparent moisture sink (Q2) in East China in the early summer of 1984 have been estimated with the budget calculation method. It has been found that during this time period, there occurred three significant episodes of strong heating that corresponded to the three events of heavy rainfalls prior to, during and post to the onset of mei-yu (plum rains). The peaks of Q1 were generally found at 200 hPa, with the heating rate of 6°-10°C/day observed, while the peaks of Q2 were located at about 700 hPa, with their magnitudes being 12o-20°C/day. The vertical distribution of Q1 and Q2 indicates the importance of eddy vertical flux. In other words, the convective activity plays a very important role in the processes of precipitation in East Asia in the early summer. This result is different from the finding obtained by Luo and Yanai (1984) in their calculation of the case of 1979. They pointed out that in the early summer of 1979 the continuous precipitation dominated the region of East China.Among the three terms of Q1 and Q2, the maximum contribution was made from the adiabatic term, which was caused by strong ascending motion. The adiabatic cooling produced by this term may compensate for the heating created by the condensation process.In addition, it has been revealed that the three significant heating processes were closely related to the seasonal transition from spring to summer in East China. One major synoptic event associated with it showed up in the sudden jump of the upper tropospheric, subtropical jet-stream from 30°N to 40°N. So did the plane-tary frontal zone in East China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return