Advanced Search
Article Contents

Characteristics of the Seasonal Variation of the Surface Total Heating over the Tibetan Plateau and Its Surrounding Area in Summer 1998 and Its Relationship with the Convection over the Subtropical Area of the Western Pacific


doi: 10.1007/BF02690792

  • Using the dataset of 1998 TIPEX, the data of 6 automatic heat balance observational stations (AWS)from May to August 1998, a dataset of 52 surface observational stations over the Tibetan Plateau (TP)and its adjacent region, the daily rainfall amounts from about 300 stations in China, the outgoing longwaveradiation (OLR) data received by the National Satellite Meteorological Center(NSMC) of China, and TBBdata from GMS remote sensing of Japan, the characteristics of the seasonal variation of the surface totalheating over TP and its surrounding area in summer 1998 and its relationship with the convection overthe subtropical area of the western Pacific is studied in this paper. The results show that the surface totalheating over TP had a close relationship with the onset of the rainy season, and after the onset of the rainyseason, the regional mean surface total heating over TP decreased distinctly. Furthermore, the regionalmean surface total heating over TP had very good negative correlation with TBB over the subtropicalarea of the western Pacific along 20-30°N, which shows that the surface total heating over TP was able toaffect the convection over the subtropical area of the western Pacific.
  • [1] LI Qiang, ZHANG Renhe, 2012: Seasonal Variation of Climatological Bypassing Flows around the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1100-1110.  doi: 10.1007/s00376-012-1154-4
    [2] ZHANG Dingyuan, LIAO Hong, WANG Yuesi, 2014: Simulated Spatial Distribution and Seasonal Variation of Atmospheric Methane over China: Contributions from Key Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 283-292.  doi: 10.1007/s00376-013-3018-y
    [3] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [4] KUANG Xueyuan, ZHANG Yaocun, 2005: Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 831-840.  doi: 10.1007/BF02918683
    [5] Jinghua CHEN, Xiaoqing WU, Chunsong LU, Yan YIN, 2022: Seasonal and Diurnal Variations of Cloud Systems over the Eastern Tibetan Plateau and East China: A Cloud-resolving Model Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1034-1049.  doi: 10.1007/s00376-021-0391-9
    [6] Bian Jianchun, Chen Hongbin, Zhao Yanliang, Lü Daren, 2002: Variation Features of Total Atmospheric Ozone in Beijing and Kunming Based on Dobson and TOMS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 279-286.  doi: 10.1007/s00376-002-0022-z
    [7] Li Guo ping, Lu Jinghua, Jin Bingling, Bu Nima, 2001: The Effects of Anomalous Snow Cover of the Tibetan Plateau on the Surface Heating, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1207-1214.  doi: 10.1007/s00376-001-0034-0
    [8] Liu Liping, Feng Jinming, Chu Rongzhong, Zhou Yunjun, K. Ueno, 2002: The Diurnal Variation of Precipitation in Monsoon Season in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 365-378.  doi: 10.1007/s00376-002-0028-6
    [9] LI Ying, HU Zeyong, 2009: A Study on Parameterization of Surface Albedo over Grassland Surface in the Northern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 161-168.  doi: 10.1007/s00376-009-0161-6
    [10] WANG Leidi, LÜ Daren, HE Qing, 2015: The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 759-771.  doi: 10.1007/s00376-014-4131-2
    [11] YANG Kun, Toshio KOIKE, 2008: Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 974-985.  doi: 10.1007/s00376-008-0974-8
    [12] MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang, 2012: The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 47-53.  doi: 10.1007/s00376-011-1008-5
    [13] Jiang Hao, Wang Keli, 2001: Analysis of the Surface Temperature on the Tibetan Plateau from Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1215-1223.  doi: 10.1007/s00376-001-0035-z
    [14] Liu Huizhi, Zhang Hongsheng, Bian Lin'gen, Chen Jiayi, Zhou Mingyu, Xu Xiangde, Li Shiming, Zhao Yijun, 2002: Characteristics of Micrometeorology in the Surface Layer in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 73-88.  doi: 10.1007/s00376-002-0035-7
    [15] LIU Xiangcui, LIU Hailong, 2014: Heat Budget of the South-Central Equatorial Pacific in CMIP3 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 669-680.  doi: 10.1007/s00376-013-2299-5
    [16] Anmin DUAN, Ruizao SUN, Jinhai HE, 2017: Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 157-168.  doi: 10.1007/s00376-016-6008-z
    [17] Guoxiong WU, Bian HE, Anmin DUAN, Yimin LIU, Wei YU, 2017: Formation and Variation of the Atmospheric Heat Source over the Tibetan Plateau and Its Climate Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1169-1184.  doi: 10.1007/s00376-017-7014-5
    [18] Yu ZHAO, Anmin DUAN, Guoxiong WU, 2018: Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 927-941.  doi: 10.1007/s00376-018-7217-4
    [19] BIAN Lingen, XU Xiangde, LU Longhua, GAO Zhiqiu, ZHOU Mingyu, LIU Huizhi, 2003: Analyses of Turbulence Parameters in the Near-Surface Layer at Qamdo of the Southeastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 369-378.  doi: 10.1007/BF02690795
    [20] ZHONG Lei, MA Yaoming, Zhongbo SU, Mhd. Suhyb SALAMA, 2010: Estimation of Land Surface Temperature over the Tibetan Plateau Using AVHRR and MODIS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1110-1118.  doi: 10.1007/s00376-009-9133-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2003
Manuscript revised: 10 May 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Characteristics of the Seasonal Variation of the Surface Total Heating over the Tibetan Plateau and Its Surrounding Area in Summer 1998 and Its Relationship with the Convection over the Subtropical Area of the Western Pacific

  • 1. Chinese Academy of Meteorological Sciences, Beijing 100081,Chinese Academy of Meteorological Sciences, Beijing 100081

Abstract: Using the dataset of 1998 TIPEX, the data of 6 automatic heat balance observational stations (AWS)from May to August 1998, a dataset of 52 surface observational stations over the Tibetan Plateau (TP)and its adjacent region, the daily rainfall amounts from about 300 stations in China, the outgoing longwaveradiation (OLR) data received by the National Satellite Meteorological Center(NSMC) of China, and TBBdata from GMS remote sensing of Japan, the characteristics of the seasonal variation of the surface totalheating over TP and its surrounding area in summer 1998 and its relationship with the convection overthe subtropical area of the western Pacific is studied in this paper. The results show that the surface totalheating over TP had a close relationship with the onset of the rainy season, and after the onset of the rainyseason, the regional mean surface total heating over TP decreased distinctly. Furthermore, the regionalmean surface total heating over TP had very good negative correlation with TBB over the subtropicalarea of the western Pacific along 20-30°N, which shows that the surface total heating over TP was able toaffect the convection over the subtropical area of the western Pacific.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return