Advanced Search
Article Contents

A Laboratory Modeling of the Velocity Field in the Convective Boundary Layer with the Particle Image Velocimetry Technique


doi: 10.1007/BF02915506

  • Based on the research of the convective boundary layer (CBL) temperature field in a convectivetank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminiumpowder (400 order s) is used as a tracer particle in the application of the particle image velocimetry (PIV)technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possessesthe characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer showsentrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable,which is similar to field observations and other tank results; the error analysis demonstrates the validityof aluminium powder, which implies the reliability of the results.
  • [1] SUN Jianning, JIANG Weimei, CHEN Ziyun, YUAN Renmin, 2005: A Laboratory Study of the Turbulent Velocity Characteristics in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 770-780.  doi: 10.1007/BF02918721
    [2] GUO Xiaofeng, CAI Xuhui, 2005: Footprint Characteristics of Scalar Concentration in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 821-830.  doi: 10.1007/BF02918682
    [3] LIU Huizhi, Sang Jianguo, 2011: Numerical Simulation of Roll Vortices in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 477-482.  doi: 10.1007/s00376-010-9229-6
    [4] Surendra S. Parasnis, Savita B. Morwal, K. G. Vernekar, 1991: Convective Boundary Layer in the Region of the Monsoon Trough-A Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 505-509.  doi: 10.1007/BF02919273
    [5] HAN Bo, LU Shihua, AO Yinhuan, 2012: Development of the Convective Boundary Layer Capping with a Thick Neutral Layer in Badanjilin: Observations and Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 177-192.  doi: 10.1007/s00376-011-0207-4
    [6] Zhao Ming, 1987: ON THE PARAMETERIZATION OF THE VERTICAL VELOCITY AT THE TOP OF PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 233-239.  doi: 10.1007/BF02677070
    [7] HAN Bo, ZHAO Cailing, LÜ Shihua, WANG Xin, 2015: A Diagnostic Analysis on the Effect of the Residual Layer in Convective Boundary Layer Development near Mongolia Using 20th Century Reanalysis Data, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 807-820.  doi: 10.1007/s00376-014-4164-6
    [8] Fu Baopu, 1987: VARIATION IN WIND VELOCITY OVER WATER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 93-104.  doi: 10.1007/BF02656665
    [9] Zhilin ZHU, Xinzhai TANG, Fenghua ZHAO, 2020: Comparison of Ozone Fluxes over a Maize Field Measured with Gradient Methods and the Eddy Covariance Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 586-596.  doi: 10.1007/s00376-020-9217-4
    [10] XU Xiangde, ZHOU Li, ZHANG Shengjun, MIAO Qiuju, 2003: Characteristics of the Correlation between Regional Water Vapor Transport along with the Convective Action and Variation of the Pacific Subtropical High in 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 269-283.  doi: 10.1007/s00376-003-0013-8
    [11] WANG Xiaokang, NI Yunqi, XU Wenhui, GU Chunli, QIU Xuexing, 2011: Water Cycle and Microphysical Processes Associated with a Mesoscale Convective Vortex System in the Dabie Mountain Area, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1405-1422.  doi: 10.1007/s00376-011-0089-5
    [12] LIU Huizhi, LIANG Bin, ZHU Fengrong, ZHANG Boyin, SANG Jianguo, 2004: Water-Tank Experiment on the Thermal Circulation Induced by the Bottom Heating in an Asymmetric Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 536-546.  doi: 10.1007/BF02915721
    [13] HUANG Yi, WANG Meihua, MAO Jietai, 2004: Retrieval of Upper Tropospheric Relative Humidity by the GMS-5 Water Vapor Channel: A Study of the Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 53-60.  doi: 10.1007/BF02915680
    [14] Chenbin XUE, Zhiying DING, Xinyong SHEN, Xian CHEN, 2022: Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method: Refinement of Vertical Velocity Estimates, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 145-160.  doi: 10.1007/s00376-021-1035-9
    [15] Fei Shiqiang, Tan Zhemin, 2001: On the Helicity Dynamics of Severe Convective Storms, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 67-86.  doi: 10.1007/s00376-001-0005-5
    [16] YANG Lu, WANG Zhenhui, CHU Yanli, ZHAO Hang, TANG Min, 2014: Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1386-1394.  doi: 10.1007/s00376-014-3165-9
    [17] GAO Zhqiiu, Qing WANG, ZHOU Mingyu, 2009: Wave-Dependence of Friction Velocity, Roughness Length, and Drag Coefficient over Coastal and Open Water Surfaces by Using Three Databases, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 887-894.  doi: 10.1007/s00376-009-8130-7
    [18] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [19] Peng Jiayi, Wu Rongsheng, Wang Yuan, 2002: Initiation Mechanism of Meso-β Scale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 870-884.  doi: 10.1007/s00376-002-0052-6
    [20] Jing YANG, Gaopeng LU, Ningyu LIU, Haihua CUI, Yu WANG, Morris COHEN, 2017: Analysis of a Mesoscale Convective System that Produced a Single Sprite, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 258-271.  doi: 10.1007/s00376-016-6092-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2003
Manuscript revised: 10 July 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Laboratory Modeling of the Velocity Field in the Convective Boundary Layer with the Particle Image Velocimetry Technique

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093;National Meteorological Center of China, Beijing 100081,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026

Abstract: Based on the research of the convective boundary layer (CBL) temperature field in a convectivetank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminiumpowder (400 order s) is used as a tracer particle in the application of the particle image velocimetry (PIV)technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possessesthe characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer showsentrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable,which is similar to field observations and other tank results; the error analysis demonstrates the validityof aluminium powder, which implies the reliability of the results.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return