Advanced Search
Article Contents

Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression


doi: 10.1007/BF02915509

  • A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11-20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1-31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 ma m-a). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.
  • [1] ZHANG Lei, QIU Chongjian, HUANG Jianping, 2008: A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 897-904.  doi: 10.1007/s00376-008-0897-4
    [2] Li Jun, 1994: Temperature and Water Vapor Weighting Functions from Radiative Transfer Equation with Surface Emissivity and Solar Reflectivity, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 421-426.  doi: 10.1007/BF02658162
    [3] Li Jun, 1995: The Capability of Atmospheric Profile Retrieval from Satellite High Resolution Infrared Sounder Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 255-258.  doi: 10.1007/BF02656838
    [4] Li Jun, Lu Daren, 1997: Nonlinear Retrieval of Atmospheric Ozone Profile from Solar Backscatter Ultraviolet Measurements: Theory and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 473-480.  doi: 10.1007/s00376-997-0065-2
    [5] Wu Beiying, John Gille, 1999: Retrieval of Tropospheric CO Profiles Using Correlation Radiometer. II: Effects of Other Gases and the Retrieval in Cloudy Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 507-522.  doi: 10.1007/s00376-999-0027-y
    [6] Li Jun, Huang Hung-Lung, 1994: Optimal Use of High Resolution Infrared Sounder Channels in Atmospheric Profile Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 271-276.  doi: 10.1007/BF02658145
    [7] Li Jun, Zhou Fengxian, Zeng Qingcun, 1994: Simultaneous Non-linear Retrieval of Atmospheric Temperature and Absorbing Constituent Profiles from Satellite Infrared Sounder Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 128-138.  doi: 10.1007/BF02666541
    [8] YAO Zhigang, CHEN Hongbin, LIN Longfu, 2005: Retrieving Atmospheric Temperature Profiles from AMSU-A Data with Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 606-616.  doi: 10.1007/BF02918492
    [9] ZHANG Shuwen, LI Deqin, QIU Chongjian, 2011: A Multimodel Ensemble-based Kalman Filter for the Retrieval of Soil Moisture Profiles, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 195-206.  doi: 10.1007/s00376-010-9200-6
    [10] HUANG Jianping, 2006: Analysis of Ice Water Path Retrieval Errors Over Tropical Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 165-180.  doi: 10.1007/s00376-006-0165-4
    [11] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [12] ZHAO Deming, SU Bingkai, ZHAO Ming, 2006: Soil Moisture Retrieval from Satellite Images and Its Application to Heavy Rainfall Simulation in Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 299-316.  doi: 10.1007/s00376-006-0299-4
    [13] WANG Xin, Lü Daren, 2005: Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 759-764.  doi: 10.1007/BF02918719
    [14] HUANG Yi, WANG Meihua, MAO Jietai, 2004: Retrieval of Upper Tropospheric Relative Humidity by the GMS-5 Water Vapor Channel: A Study of the Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 53-60.  doi: 10.1007/BF02915680
    [15] Zou Jinshang, Liu Huilan, 1986: DISTRIBUTION OF WATER VAPOR CONTENT (WVC) AND ITS SEASONAL VARIATION OVER THE MAINLAND OF CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 385-395.  doi: 10.1007/BF02678659
    [16] HUANG Sixun, CAO Xiaoqun, DU Huadong, WANG Tingfang, XIANG Jie, 2006: Retrieval of Atmospheric and Oceanic Parameters and the Relevant Numerical Calculation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 106-117.  doi: 10.1007/s00376-006-0011-8
    [17] HONG Gang, Georg HEYGSTER, Klaus KUNZI, LI Wanbiao, ZHU Yuanjing, ZHAO Bolin, 2003: Retrieval of Microwave Surface Emissivities at TMI Frequencies in Shouxian, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 253-259.  doi: 10.1007/s00376-003-0011-x
    [18] ZHANG Jie, Zhenglong LI, Jun LI, Jinglong LI, 2014: Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 559-569.  doi: 10.1007/s00376-013-3094-z
    [19] Zhang Fengying, Ma Xialin, 1986: CALCULATION OF UPDATED COEFFICIENTS FOR ATMOSPHERIC TEMPERATURE RETRIEVAL, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 150-161.  doi: 10.1007/BF02682549
    [20] Minwei Qian, N. Loglisci, C. Cassardo, A. Longhetto, C. Giraud, 2001: Energy and Water Balance at Soil-Air Interface in a Sahelian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 897-909.

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2003
Manuscript revised: 10 November 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression

  • 1. NOAA, National Severe Storms Laboratory, Norman, Oklahoma, USA,NOAA/NWS/National Centers for Environmental Prediction, Camp Springs, Maryland, USA

Abstract: A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11-20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1-31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 ma m-a). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return