Advanced Search
Article Contents

The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity


doi: 10.1007/BF02918486

  • In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to study the effect of assimilating the sea-wind data from QuikSCAT on the prediction of typhoon track and intensity. The case of Typhoon Dujuan (2003) is first tested and the results show appreciable improvements. Twelve other cases in 2003 are then evaluated. The assimilation of the QuikSCAT data produces significant impacts on the structure of Dujuan in terms of the horizontal and vertical winds, sealevel pressure and temperature at the initial time. With the assimilation, the 24-h (48-h) track prediction of 11 (10) out of the 12 typhoons is improved. The 24-h (48-h) prediction of typhoon intensity is also improved in 10 (9) of the 12 cases. These experiments therefore demonstrate that assimilation of the QuikSCAT sea-wind data can increase the accuracy of typhoon track and intensity predictions through modification of the initial fields associated with the typhoon.
  • [1] ZHAO Ying, WANG Bin, 2008: Numerical Experiments for Typhoon Dan Incorporating AMSU-A Retrieved Data with 3DVM, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 692-703.  doi: 10.1007/s00376-008-0692-2
    [2] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [3] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [4] GU Jianfeng, Qingnong XIAO, Ying-Hwa KUO, Dale M. BARKER, XUE Jishan, MA Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 415-427.  doi: 10.1007/BF02918755
    [5] ZHANG Xiaoyan, WANG Bin, JI Zhongzhen, Qingnong XIAO, ZHANG Xin, 2003: Initialization and Simulation of a Typhoon Using 4-Dimensional Variational Data Assimilation-Research on Typhoon Herb(1996), ADVANCES IN ATMOSPHERIC SCIENCES, 20, 612-622.  doi: 10.1007/BF02915504
    [6] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [7] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [8] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [9] Jia LIANG, Liguang WU, Guojun GU, 2018: Numerical Study of the Influences of a Monsoon Gyre on Intensity Changes of Typhoon Chan-Hom (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 35, 567-579.  doi: 10.1007/s00376-017-7155-6
    [10] WU Fanghua, LIN Pengfei, LIU Hailong, 2012: Influence of a Southern Shift of the ITCZ from Quick Scatterometer Data on the Pacific North Equatorial Countercurrent, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1292-1304.  doi: 10.1007/s00376-012-1149-1
    [11] Lei LIU, Guihua WANG, Ze ZHANG, Huizan WANG, 2022: Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1501-1518.  doi: 10.1007/s00376-022-1285-1
    [12] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [13] Xie Zhenghui, Dai Yongjiu, Zeng Qingcun, 1999: An Unsaturated Soil Water Flow Problem and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 183-196.  doi: 10.1007/BF02973081
    [14] Tianxue ZHENG, Yongbo TAN, Yiru WANG, 2021: Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 446-459.  doi: 10.1007/s00376-020-0154-z
    [15] Chen Yuejuan, Zheng Bin, Zhang Hong, 2002: The Features of Ozone Quasi-Biennial Oscillation in Tropical Stratosphere and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 777-793.  doi: 10.1007/s00376-002-0044-6
    [16] PING Fan, GAO Shouting, WANG Huijun, 2003: A Comparative Study of the Numerical Simulation of the 1998 Summer Flood in China by Two Kinds of Cumulus Convective Parameterized Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 149-157.  doi: 10.1007/BF03342059
    [17] Jianjun LIU, Feimin ZHANG, Zhaoxia PU, 2017: Numerical Simulation of the Rapid Intensification of Hurricane Katrina (2005): Sensitivity to Boundary Layer Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 482-496.  doi: 10.1007/s00376-016-6209-5
    [18] LI Weiping, XUE Yongkang, 2005: Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 865-876.  doi: 10.1007/BF02918686
    [19] Song Yukuan, Chen Longxun, Dong Min, 1994: Numerical Simulation for the Impact of Deforestation on Climate in China and Its Neighboring Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 212-223.  doi: 10.1007/BF02666547
    [20] Zhang Yaocun, Qian Yongfu, 1999: Numerical Simulation of the Regional Ocean Circulation in the Coastal Areas of China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 443-450.  doi: 10.1007/s00376-999-0022-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2005
Manuscript revised: 10 July 2005
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity

  • 1. Shanghai Typhoon Institute, Shanghai 200030,Shanghai Typhoon Institute, Shanghai 200030,Shanghai Typhoon Institute, Shanghai 200030,Shanghai Typhoon Institute, Shanghai 200030,Shanghai Typhoon Institute, Shanghai 200030;Department of Physics and Materials Science, City University of Hong Kong, Hong Kong

Abstract: In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to study the effect of assimilating the sea-wind data from QuikSCAT on the prediction of typhoon track and intensity. The case of Typhoon Dujuan (2003) is first tested and the results show appreciable improvements. Twelve other cases in 2003 are then evaluated. The assimilation of the QuikSCAT data produces significant impacts on the structure of Dujuan in terms of the horizontal and vertical winds, sealevel pressure and temperature at the initial time. With the assimilation, the 24-h (48-h) track prediction of 11 (10) out of the 12 typhoons is improved. The 24-h (48-h) prediction of typhoon intensity is also improved in 10 (9) of the 12 cases. These experiments therefore demonstrate that assimilation of the QuikSCAT sea-wind data can increase the accuracy of typhoon track and intensity predictions through modification of the initial fields associated with the typhoon.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return