Advanced Search

Volume 7 Issue 4

Oct.  1990

Article Contents

Study on Microwave Remote Sensing of Atmosphere, Cloud and Rain


doi: 10.1007/BF03342566

  • In this paper, recent research of microwave remote sensing of atmosphere, cloud and rain in China is presented. It includes the following aspects:(1) Progress in the development of multifrequency radiometer and its characteristics and parameters;(2) Application of microwave remote sensing in prediction of atmospheric boundary layer. The atmospheric temperature profiles are derived with 5 mm (54.5 GHz) radiometer angle-scanning observations. Due to the fact that microwave radiometer could monitor the atmospheric temperature profile continuously and make the initialization of numerical model any time, it is helpful for improving the accuracy in prediction of the evolution of atmospheric boundary layer;(3) Theory and application of microwave radiometers in monitoring atmospheric temperature, humidity and water content in cloud. The field experiment of International Satellite Cloud Climatology Project (ISCCP) at Shionomisaki and Amami Oshima of Japan for studies of cloud and weather has been described;(4) Satellite remote sensing of atmosphere and cloud. The TIROS-N TOVS satellite data are used to obtain at-mospheric temperature profile. The results are compared with those of radiosonde, with rms deviation smaller than that of the current operational TOVS processing;(5) Microwave remote sensing and communication. The atmospheric attenuations are derived with microwave remote sensing methods such as solar radiation method etc., in order to obtain the local value instantaneously. The characteristics of Beijings rainfall have been analysed and the probability of microwave attenuation of rain is predicted;(6) For improvement of the accuracy of rainfall measurement, a radiometer-radar system (= 3.2 cm) has been developed. The variation of rainfull distribution and area-rainfall may be obtained by its measurements, which may be helpful for hydrological prediction.The prospect of microwave remote sensing in meteorology is also discussed.
  • [1] Qiu Jinhuan, Lu Daren, 1991: On Lidar Application for Remote Sensing of the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 369-378.  doi: 10.1007/BF02919620
    [2] Jinqiang ZHANG, Xiang'ao XIA, Hongbin CHEN, 2017: A Comparison of Cloud Layers from Ground and Satellite Active Remote Sensing at the Southern Great Plains ARM Site, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 347-359.  doi: 10.1007/s00376-016-6030-1
    [3] Zhao Bolin, Zhu Yuanjing, Zhang Chengxiang, Zhen Jinming, Zhang WenJan, 1993: Meteorological Satellite TIROS-N TOVS Remote Sensing of Atmospheric Property and Cloud, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 387-392.  doi: 10.1007/BF02656963
    [4] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [5] Zhao Gaoxiang, 1998: Analysis of the Ability of Infrared Water Vapor Channel for Moisture Remote Sensing in the Lower Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 107-112.  doi: 10.1007/s00376-998-0022-8
    [6] Qiu Jinhuan, Wang Hongqi, Zhou Xiuji, Lu Daren, 1985: EXPERIMENTAL STUDY OF REMOTE SENSING OF ATMOSPHERIC AEROSOL SIZE DISTRIBUTION BY COMBINED SOLAR EXTINCTION AND FORWARD SCATTERING METHOD, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 307-315.  doi: 10.1007/BF02677246
    [7] Liu Changsheng, 1988: REMOTE SENSING OF TEMPERATURE PROFILES IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 67-74.  doi: 10.1007/BF02657346
    [8] Sibo ZHANG, Li GUAN, 2017: Preliminary Study on Direct Assimilation of Cloud-affected Satellite Microwave Brightness Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 199-208.  doi: 10.1007/s00376-016-6043-9
    [9] Swapan MALLICK, Devajyoti DUTTA, Ki-Hong MIN, 2017: Quality Assessment and Forecast Sensitivity of Global Remote Sensing Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 371-382.  doi: 10.1007/s00376-016-6109-8
    [10] Ping YANG, Kuo-Nan LIOU, Lei BI, Chao LIU, Bingqi YI, Bryan A. BAUM, 2015: On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 32-63.  doi: 10.1007/s00376-014-0011-z
    [11] Huang Sixun, 1996: Inversion and Ill-Posed Problem Solutions in Atmospheric Remote Sensing, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 489-504.  doi: 10.1007/BF03342039
    [12] QIU Jinhuan, CHEN Hongbin, 2004: Recent Progresses in Atmospheric Remote Sensing Research in China-- Chinese National Report on Atmospheric Remote Sensing Research in China during 1999-2003, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 475-484.  doi: 10.1007/BF02915574
    [13] Qiu Jinhuan, Nobuo Takeuchi, 2001: Effects of Aerosol Vertical Inhomogeneity on the Upwelling Radiance and Satellite Remote Sensing of Surface Reflectance, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 539-553.  doi: 10.1007/s00376-001-0043-z
    [14] Wu Beiying, Lu Daren, 1984: REMOTE SENSING OF RAINFALL PARAMETERS BY LASER SCINTILLATION CORRELATION METHOD-COMPLETE EQUATION AND NUMERICAL SIMULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 19-39.  doi: 10.1007/BF03187613
    [15] WANG Hesong, JIA Gensuo, 2013: Regional Estimates of Evapotranspiration over Northern China Using a Remote-sensing-based Triangle Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1479-1490.  doi: 10.1007/s00376-013-2294-x
    [16] MA Yaoming, WANG Jiemin, HUANG Ronghui, WEI Guoan, Massimo MENENTI, SU Zhongbo, HU Zeyong, GAO Feng, WEN Jun, 2003: Remote Sensing Parameterization of Land Surface Heat Fluxes over Arid and Semi-arid Areas, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 530-539.  doi: 10.1007/BF02915496
    [17] Wu Beiying, Lu Daren, 1985: REMOTE SENSING OF RAINFALL PARAMETERS BY LASER SCINTILLATION CORRELATION METHOD -NUMERICAL SIMULATION OF THE RETRIEVING, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 325-333.  doi: 10.1007/BF02677248
    [18] Cheng Minghu, Shi Guangyu, Zhou Xiuji, 1990: Numerical Experiment of Combined Infrared and Ultraviolet Radiation Remote Sensing to Determine the Profile and Total Content of Atmospheric Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 305-319.  doi: 10.1007/BF03179763
    [19] Qiu Jinhuan, 1998: A Method for Spaceborne Synthetic Remote Sensing of Atmospheric Aerosol Optical Depth and Vegetation Reflectance, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 17-30.  doi: 10.1007/s00376-998-0014-8
    [20] Zhao Bolin, Han Qingyuan, Zhu Yuanjing, 1985: A STUDY ON ABSORPTION CHARACTERISTICS OF THE ATMOSPHERIC WINDOW IN MICROWAVE BAND, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 28-34.  doi: 10.1007/BF03179734

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1990
Manuscript revised: 10 October 1990
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Study on Microwave Remote Sensing of Atmosphere, Cloud and Rain

  • 1. Department of Geophysics, Peking University, Beijing 100871

Abstract: In this paper, recent research of microwave remote sensing of atmosphere, cloud and rain in China is presented. It includes the following aspects:(1) Progress in the development of multifrequency radiometer and its characteristics and parameters;(2) Application of microwave remote sensing in prediction of atmospheric boundary layer. The atmospheric temperature profiles are derived with 5 mm (54.5 GHz) radiometer angle-scanning observations. Due to the fact that microwave radiometer could monitor the atmospheric temperature profile continuously and make the initialization of numerical model any time, it is helpful for improving the accuracy in prediction of the evolution of atmospheric boundary layer;(3) Theory and application of microwave radiometers in monitoring atmospheric temperature, humidity and water content in cloud. The field experiment of International Satellite Cloud Climatology Project (ISCCP) at Shionomisaki and Amami Oshima of Japan for studies of cloud and weather has been described;(4) Satellite remote sensing of atmosphere and cloud. The TIROS-N TOVS satellite data are used to obtain at-mospheric temperature profile. The results are compared with those of radiosonde, with rms deviation smaller than that of the current operational TOVS processing;(5) Microwave remote sensing and communication. The atmospheric attenuations are derived with microwave remote sensing methods such as solar radiation method etc., in order to obtain the local value instantaneously. The characteristics of Beijings rainfall have been analysed and the probability of microwave attenuation of rain is predicted;(6) For improvement of the accuracy of rainfall measurement, a radiometer-radar system (= 3.2 cm) has been developed. The variation of rainfull distribution and area-rainfall may be obtained by its measurements, which may be helpful for hydrological prediction.The prospect of microwave remote sensing in meteorology is also discussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return