Advanced Search
Article Contents

Comparison of Daily Extreme Temperatures over Eastern China and South Korea between 1996--2005


doi: 10.1007/s00376-009-0253-3

  • This paper examined the decadal mean, seasonal cycle, and interannual variations of mean and extreme temperatures using daily temperature and relative humidity data from 589 stations over eastern China and South Korea between 1996--2005. The results show that the decadal mean Tm (mean daily mean temperature) and the TNn (minimum daily minimum temperature) increase from north to south; the opposite spatial gradient is found in the DTR (diurnal temperature range); the value of the DTR over South Korea is in-between that over North China and the mid-low Yangtze River valley; the TXx (maximum daily maximum temperature) has a unique spatial distribution, with the largest value over eastern China. The highest standard deviation (STD) is located over northern China and the TNn has the largest area coverage of the high STD. The peak of the seasonal cycle for the Tm, TXx and TNn over South Korea (August) occurs one month later than that over eastern China (July). The seasonal cycle of the DTR has two peaks (April and October); the value in the middle-lower reaches of the Yangtze River valley is larger than that in South Korea during July and August owing to the seasonal northward jump of the major monsoon rain band. The interannual variations of summertime temperature indices including the T, TXx, and DTR over South Korea are consistent (opposite) to that over northern (southern) China. For the wintertime temperature indices however, the variation over South Korea is consistent with that over eastern China.
  • [1] CHEN Wei, LU Riyu, 2014: The Interannual Variation in Monthly Temperature over Northeast China during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 515-524.  doi: 10.1007/s00376-013-3102-3
    [2] PENG Jingbei, CHEN Lieting, ZHANG Qingyun, 2014: The Relationship between the El Nio/La Nia Cycle and the Transition Chains of Four Atmospheric Oscillations. Part I: The Four Oscillations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 468-479.  doi: 10.1007/s00376-013-2275-0
    [3] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [4] GUO Zhun, ZHOU Tianjun, 2015: Seasonal Variation and Physical Properties of the Cloud System over Southeastern China Derived from CloudSat Products, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 659-670.  doi: 10.1007/s00376-014-4070-y
    [5] Kairan YING, Jing PENG, Li DAN, Xiaogu ZHENG, 2022: Ocean–atmosphere Teleconnections Play a Key Role in the Interannual Variability of Seasonal Gross Primary Production in China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1329-1342.  doi: 10.1007/s00376-021-1226-4
    [6] Mengyu DENG, Riyu LU, Chaofan LI, 2022: Contrasts between the Interannual Variations of Extreme Rainfall over Western and Eastern Sichuan in Mid-summer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 999-1011.  doi: 10.1007/s00376-021-1219-3
    [7] YAN Zhongwei, XIA Jiangjiang, QIAN Cheng, ZHOU Wen, 2011: Changes in Seasonal Cycle and Extremes in China during the Period 1960--2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 269-283.  doi: 10.1007/s00376-010-0006-3
    [8] GAO Jianyun, Tim LI, 2012: Interannual Variation of Multiple Tropical Cyclone Events in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1279-1291.  doi: 10.1007/s00376-012-1031-1
    [9] GAO Jianyun, Tim LI, 2012: Interannual Variation of Multiple Tropical Cyclone Events in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1279-1291.  doi: 10.1007/s00376-012-1031-1
    [10] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [11] Yuanxin LIU, Lijing CHENG, Yuying PAN, Zhetao TAN, John ABRAHAM, Bin ZHANG, Jiang ZHU, Junqiang SONG, 2022: How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1650-1672.  doi: 10.1007/s00376-022-1381-2
    [12] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [13] LI Weiping, XUE Yongkang, 2005: Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 865-876.  doi: 10.1007/BF02918686
    [14] WANG Lin, CHEN Wen, 2010: How Well do Existing Indices Measure the Strength of the East Asian Winter Monsoon?, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 855-870.  doi: 10.1007/s00376-009-9094-3
    [15] Ke Peng, Jing-Jia Luo, Yan Liu, 2023: Prediction of Seasonal Tropical Cyclone Activity in the NUIST-CFS1.0 forecast system, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2213-8
    [16] Lu Riyu, Huang Ronghui, Hee-Jeong Baek, Jai-Ho Oh, Baek-Jo Kim, 2001: Associations with the Interannual Variations of Onset and Withdrawal of the Changma, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1066-1080.  doi: 10.1007/s00376-001-0023-3
    [17] WU Zhiwei, LI Jianping, 2008: Prediction of the Asian-Australian Monsoon Interannual Variations with the Grid-Point Atmospheric Model of IAP LASG (GAMIL), ADVANCES IN ATMOSPHERIC SCIENCES, 25, 387-394.  doi: 0.1007/s00376-008-0387-8
    [18] WANG Jun, BAO Qing, Ning ZENG, LIU Yimin, WU Guoxiong, JI Duoying, 2013: Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1549-1559.  doi: 10.1007/s00376-013-2169-1
    [19] DAN Li, JI Jinjun, ZHANG Peiqun, 2005: The Soil Moisture of China in a High Resolution Climate-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 720-729.  doi: 10.1007/BF02918715
    [20] Marco Y. T. LEUNG, Wen ZHOU, Chi-Ming SHUN, Pak-Wai CHAN, 2018: Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 435-444.  doi: 10.1007/s00376-017-7118-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2009
Manuscript revised: 10 March 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Comparison of Daily Extreme Temperatures over Eastern China and South Korea between 1996--2005

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;Meteorological Research Institute, Korea Meteorological Administration, Seoul 46018, Korea

Abstract: This paper examined the decadal mean, seasonal cycle, and interannual variations of mean and extreme temperatures using daily temperature and relative humidity data from 589 stations over eastern China and South Korea between 1996--2005. The results show that the decadal mean Tm (mean daily mean temperature) and the TNn (minimum daily minimum temperature) increase from north to south; the opposite spatial gradient is found in the DTR (diurnal temperature range); the value of the DTR over South Korea is in-between that over North China and the mid-low Yangtze River valley; the TXx (maximum daily maximum temperature) has a unique spatial distribution, with the largest value over eastern China. The highest standard deviation (STD) is located over northern China and the TNn has the largest area coverage of the high STD. The peak of the seasonal cycle for the Tm, TXx and TNn over South Korea (August) occurs one month later than that over eastern China (July). The seasonal cycle of the DTR has two peaks (April and October); the value in the middle-lower reaches of the Yangtze River valley is larger than that in South Korea during July and August owing to the seasonal northward jump of the major monsoon rain band. The interannual variations of summertime temperature indices including the T, TXx, and DTR over South Korea are consistent (opposite) to that over northern (southern) China. For the wintertime temperature indices however, the variation over South Korea is consistent with that over eastern China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return