Advanced Search
Article Contents

Regional Variability of Climate Change Hot-spots in East Asia


doi: 10.1007/s00376-009-9034-2

  • The regional climate change index (RCCI) is employed to investigate hot-spots under 21st century global warming over East Asia. The RCCI is calculated on a 1-degree resolution grid from the ensemble of CMIP3 simulations for the B1, A1B, and A2 IPCC emission scenarios. The RCCI over East Asia exhibits marked sub-regional variability. Five sub-regional hot-spots are identified over the area of investigation: three in the northern regions (Northeast China, Mongolia, and Northwest China), one in eastern China, and one over the Tibetan Plateau. Contributions from different factors to the RCCI are discussed for the sub-regions. Analysis of the temporal evolution of the hot-spots throughout the 21st century shows different speeds of response time to global warming for the different sub-regions. Hot-spots firstly emerge in Northwest China and Mongolia. The Northeast China hot-spot becomes evident by the mid of the 21st century and it is the most prominent by the end of the century. While hot-spots are generally evident in all the 5 sub-regions for the A1B and A2 scenarios, only the Tibetan Plateau and Northwest China hot-spots emerge in the B1 scenario, which has the lowest greenhouse gas (GHG) concentrations. Our analysis indicates that sub-regional hot-spots show a rather complex spatial and temporal dependency on the GHG concentration and on the different factors contributing to the RCCI.
  • [1] FENG Jinming, WEI Ting, DONG Wenjie, WU Qizhong, and WANG Yongli, 2014: CMIP5/AMIP GCM Simulations of East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 836-850.  doi: 10.1007/s00376-013-3131-y
    [2] Yan HUANG, William L. CHAMEIDES, Qian TAN, Robert E. DICKINSON, 2008: Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 946-959.  doi: 10.1007/s00376-008-0946-z
    [3] Guo Yufu, Yu Yongqiang, Liu Xiying, Zhang Xuehong, 2001: Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 53-66.  doi: 10.1007/s00376-001-0004-6
    [4] WANG Jia, ZHI Xiefei, and CHEN Yuwen, 2013: Probabilistic multimodel ensemble prediction of decadal variability of East Asian surface air temperature based on IPCC-AR5 near-term climate simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1129-1142.  doi: 10.1007/s00376-012-2182-9
    [5] Wang Zifa, Huang Meiyuan, He Dongyang, Xu Huaying, Zhou Ling, 1996: Sulfur Distribution and Transport Studies in East Asia Using Eulerian Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 399-409.  doi: 10.1007/BF02656856
    [6] GAO Lijie, ZHANG Meigen, HAN Zhiwei, 2009: Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 312-318.  doi: 10.1007/s00376-009-0312-9
    [7] Samuel Takele KENEA, Young-Suk OH, Jae-Sang RHEE, Tae-Young GOO, Young-Hwa BYUN, Shanlan LI, Lev D. LABZOVSKII, Haeyoung LEE, Robert F. BANKS, 2019: Evaluation of Simulated CO2 Concentrations from the CarbonTracker-Asia Model Using In-situ Observations over East Asia for 2009-2013, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 603-613.  doi: 10.1007/s00376-019-8150-x
    [8] Gong-Wang Si, Kuranoshin Kato, Takao Takeda, 1995: The Early Summer Seasonal Change of Large-scale Circulation over East Asia and Its Relation to Change of The Frontal Features and Frontal Rainfall Environment During 1991 Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 151-176.  doi: 10.1007/BF02656829
    [9] LI Fang, LIN Zhongda, 2015: Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 497-504.  doi: 10.1007/s00376-014-4073-8
    [10] Dabang JIANG, Dan HU, Zhiping TIAN, Xianmei LANG, 2020: Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1102-1118.  doi: 10.1007/s00376-020-2034-y
    [11] WANG Xinmin, ZHAI Panmao, WANG Cuicui, 2009: Variations in Extratropical Cyclone Activity in Northern East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 471-479.  doi: 10.1007/s00376-009-0471-8
    [12] LI Jiawei, HAN Zhiwei, 2012: A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 101-117.  doi: 10.1007/s00376-011-0234-1
    [13] Akio KITOH, Masahiro HOSAKA, Yukimasa ADACHI, Kenji KAMIGUCHI, 2005: Future Projections of Precipitation Characteristics in East Asia Simulated by the MRI CGCM2, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 467-478.  doi: 10.1007/BF02918481
    [14] Tae-Won PARK, Jee-Hoon JEONG, Chang-Hoi HO, Seong-Joong KIM, 2008: Characteristics of Atmospheric Circulation Associated with Cold Surge Occurrences in East Asia: A Case Study During 2005/06 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 791-804.  doi: 10.1007/s00376-008-0791-0
    [15] LIU Qianxia, ZHANG Meigen, WANG Bin, 2005: Simulation of Tropospheric Ozone with MOZART-2:An Evaluation Study over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 585-594.  doi: 10.1007/BF02918490
    [16] Zhenxi ZHANG, Wen ZHOU, Mark WENIG, Liangui YANG, 2017: Impact of Long-range Desert Dust Transport on Hydrometeor Formation over Coastal East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 101-115.  doi: 10.1007/s00376-016-6157-0
    [17] Fei WANG, Hua ZHANG, Qi CHEN, Min ZHAO, Ting YOU, 2020: Analysis of Short-term Cloud Feedback in East Asia Using Cloud Radiative Kernels, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1007-1018.  doi: 10.1007/s00376-020-9281-9
    [18] Xiaohan Li, Yi Zhang, Yanluan Lin, Xindong Peng, Baiquan ZHOU, Panmao Zhai, Jian Li, 2022: Impact of a revised trigger-closure of the double-plume convective parameterization on precipitation simulation over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2225-9
    [19] Si-Ning LING, Ri-Yu LU, Hao Liu, Yali Yang, 2022: Interannual Meridional Displacement of Upper-tropospheric Westerly Jet over the Western East Asia in Summer, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2279-8
    [20] Wei CHEN, Xiaowei HONG, Riyu LU, Aifen JIN, Shizhu JIN, Jae-Cheol NAM, Jin-Ho SHIN, Tae-Young GOO, Baek-Jo KIM, 2016: Variation in Summer Surface Air Temperature over Northeast Asia and Its Associated Circulation Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1-9.  doi: 10.1007/s00376-015-5056-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2009
Manuscript revised: 10 July 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Regional Variability of Climate Change Hot-spots in East Asia

  • 1. National Climate Center, China Meteorological Administration, Beijing 100081,National Climate Center, China Meteorological Administration, Beijing 100081; The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy,The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Abstract: The regional climate change index (RCCI) is employed to investigate hot-spots under 21st century global warming over East Asia. The RCCI is calculated on a 1-degree resolution grid from the ensemble of CMIP3 simulations for the B1, A1B, and A2 IPCC emission scenarios. The RCCI over East Asia exhibits marked sub-regional variability. Five sub-regional hot-spots are identified over the area of investigation: three in the northern regions (Northeast China, Mongolia, and Northwest China), one in eastern China, and one over the Tibetan Plateau. Contributions from different factors to the RCCI are discussed for the sub-regions. Analysis of the temporal evolution of the hot-spots throughout the 21st century shows different speeds of response time to global warming for the different sub-regions. Hot-spots firstly emerge in Northwest China and Mongolia. The Northeast China hot-spot becomes evident by the mid of the 21st century and it is the most prominent by the end of the century. While hot-spots are generally evident in all the 5 sub-regions for the A1B and A2 scenarios, only the Tibetan Plateau and Northwest China hot-spots emerge in the B1 scenario, which has the lowest greenhouse gas (GHG) concentrations. Our analysis indicates that sub-regional hot-spots show a rather complex spatial and temporal dependency on the GHG concentration and on the different factors contributing to the RCCI.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return