Advanced Search
Article Contents

The Impact of Verification Area Design on Tropical Cyclone Targeted Observations Based on the CNOP Method


doi: 10.1007/s00376-011-0120-x

  • This study investigated the impact of different verification-area designs on the sensitive areas identified using the conditional nonlinear optimal perturbation (CNOP) method for tropical cyclone targeted observations. The sensitive areas identified using the first singular vector (FSV) method, which is the linear approximation of CNOP, were also investigated for comparison. By analyzing the validity of the sensitive areas, the proper design of a verification area was developed. Tropical cyclone Rananim, which occurred in August 2004 in the northwest Pacific Ocean, was studied. Two sets of verification areas were designed; one changed position, and the other changed both size and position. The CNOP and its identified sensitive areas were found to be less sensitive to small variations of the verification areas than those of the FSV and its sensitive areas. With larger variations of the verification area, the CNOP and the FSV as well as their identified sensitive areas changed substantially. In terms of reducing forecast errors in the verification area, the CNOP-identified sensitive areas were more beneficial than those identified using FSV. The design of the verification area is important for cyclone prediction. The verification area should be designed with a proper size according to the possible locations of the cyclone obtained from the ensemble forecast results. In addition, the development trend of the cyclone analyzed from its dynamic mechanisms was another reference. When the general position of the verification area was determined, a small variation in size or position had little influence on the results of CNOP.
  • [1] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [2] ZHOU Feifan, MU Mu, 2012: The Time and Regime Dependencies of Sensitive Areas for Tropical Cyclone Prediction Using the CNOP Method, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 705-716.  doi: 10.1007/s00376-012-1174-0
    [3] ZHOU Feifan, MU Mu, 2012: The Impact of Horizontal Resolution on the CNOP and on Its Identified Sensitive Areas for Tropical Cyclone Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 36-46.  doi: 10.1007/s00376-011-1003-x
    [4] CHEN Boyu, MU Mu, 2012: The Roles of Spatial Locations and Patterns of Initial Errors in the Uncertainties of Tropical Cyclone Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 63-78.  doi: 10.1007/s00376-011-0201-x
    [5] Xiangjun TIAN, Xiaobing FENG, 2019: An Adjoint-Free CNOP-4DVar Hybrid Method for Identifying Sensitive Areas in Targeted Observations: Method Formulation and Preliminary Evaluation, ADVANCES IN ATMOSPHERIC SCIENCES, , 721-732.  doi: 10.1007/s00376-019-9001-5
    [6] Qian ZHOU, Wansuo DUAN, Xu WANG, Xiang LI, Ziqing ZU, 2021: The Initial Errors in the Tropical Indian Ocean that Can Induce a Significant “Spring Predictability Barrier” for La Niña Events and Their Implication for Targeted Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1566-1579.  doi: 10.1007/s00376-021-0427-1
    [7] Zexu Luo, Xiaoquan Song, Jiaping Yin, Zhichao Bu, Yubao Chen, Yongtao Yu, Zhenlu Zhang, 2024: Comparison and Verification of Coherent Doppler Wind Lidar and Radiosonde in Beijing Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3240-9
    [8] S.S. Singh, S. S Vaidya, E. N. Rajagopal, 1990: A Limited Area Model for Monsoon Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 111-126.  doi: 10.1007/BF02919174
    [9] Wang Yuan, Tan Zhemin, 2002: Monotonic Digit Filter for Limited-Area Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 337-349.  doi: 10.1007/s00376-002-0026-8
    [10] Keon Tae SOHN, Jeong Hyeong LEE, Young Seuk CHO, 2009: Ternary Forecast of Heavy Snowfall in the Honam Area, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 327-332.  doi: 10.1007/s00376-009-0327-2
    [11] Haochen LI, Chen YU, Jiangjiang XIA, Yingchun WANG, Jiang ZHU, Pingwen ZHANG, 2019: A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1156-1170.  doi: 10.1007/s00376-019-9023-z
    [12] Li Weiping, Theo Chidiezie Chineke, Liu Xin, Wu Guoxiong, 2001: Atmospheric Diabatic Heating and Summertime Circulation in Asia-Africa Area, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 257-269.  doi: 10.1007/s00376-001-0018-0
    [13] Liu Huaqiang, Qian Yongfu, Zheng Yiqun, 2002: Effects of Nested Area Size upon Regional Climate Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 111-120.  doi: 10.1007/s00376-002-0038-4
    [14] Moon-Soo PARK, Seung Jin JOO, Soon-Ung PARK, 2014: Carbon Dioxide Concentration and Flux in an Urban Residential Area in Seoul, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1101-1112.  doi: 10.1007/s00376-013-3168-y
    [15] Surachai SATHITKUNARAT, Prungchan WONGWISES, Rudklao PAN-ARAM, ZHANG Meigen, 2006: Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 901-908.  doi: 10.1007/s00376-006-0901-9
    [16] Chen Longxun, Li Weiliang, 1985: THE ATMOSPHERIC HEAT BUDGET IN SUMMER OVER ASIA MONSOON AREA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 487-497.  doi: 10.1007/BF02678747
    [17] Qiu Jinhuan, Wang Kaixiang, 1993: A Study of the Radiation-Climate Effect of Aerosol over Beijing Area, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 147-154.  doi: 10.1007/BF02919137
    [18] XU Jun, ZHANG Yuanhang, WANG Wei, 2006: Numerical Study on the Impacts of Heterogeneous Reactions on Ozone Formation in the Beijing Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 605-614.  doi: 10.1007/s00376-006-0605-1
    [19] LI Maoshan, MA Yaoming, MA Weiqiang, HU Zeyong, ISHIKAWA Hirohiko, Zhongbo SU, SUN Fanglin, 2006: Analysis of Turbulence Characteristics over the Northern Tibetan Plateau Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 579-585.  doi: 10.1007/s00376-006-0579-z
    [20] Lei Xiao’en, Jia Xinyuan, Yuan Suzhen, Luo Qiren, Chen Silong, Xu Yu, 1987: A NUMERICAL SIMULATION OF THE DISTRIBUTION OF ACID PRECIPITATION IN CHONGQING AREA OF CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 313-322.  doi: 10.1007/BF02663601

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2011
Manuscript revised: 10 September 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Impact of Verification Area Design on Tropical Cyclone Targeted Observations Based on the CNOP Method

  • 1. Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: This study investigated the impact of different verification-area designs on the sensitive areas identified using the conditional nonlinear optimal perturbation (CNOP) method for tropical cyclone targeted observations. The sensitive areas identified using the first singular vector (FSV) method, which is the linear approximation of CNOP, were also investigated for comparison. By analyzing the validity of the sensitive areas, the proper design of a verification area was developed. Tropical cyclone Rananim, which occurred in August 2004 in the northwest Pacific Ocean, was studied. Two sets of verification areas were designed; one changed position, and the other changed both size and position. The CNOP and its identified sensitive areas were found to be less sensitive to small variations of the verification areas than those of the FSV and its sensitive areas. With larger variations of the verification area, the CNOP and the FSV as well as their identified sensitive areas changed substantially. In terms of reducing forecast errors in the verification area, the CNOP-identified sensitive areas were more beneficial than those identified using FSV. The design of the verification area is important for cyclone prediction. The verification area should be designed with a proper size according to the possible locations of the cyclone obtained from the ensemble forecast results. In addition, the development trend of the cyclone analyzed from its dynamic mechanisms was another reference. When the general position of the verification area was determined, a small variation in size or position had little influence on the results of CNOP.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return