Advanced Search
Article Contents

Moisture Transport over the Arabian Sea Associated with Summer Rainfall over Pakistan in 1994 and 2002


doi: 10.1007/s00376-011-0200-y

  • In this study, we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994, a relatively wet year, and 2002, a relatively dry year. A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted; we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere. Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction (NCEP-I and -II). A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface (E-P) from the divergence of the total moisture transport. Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions. In 1994, Pakistan received more rainfall compared to 2002 during the summer monsoon. Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August. Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal. Moreover, in 1994, a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002. Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon. Finally, from the water budget analysis, it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.
  • [1] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [2] DONG Haiping, ZHAO Sixiong, ZENG Qingcun, 2007: A Study of Influencing Systems and Moisture Budget in a Heavy Rainfall in Low Latitude Plateau in China during Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 485-502.  doi: 10.1007/s00376-007-0485-z
    [3] LU Riyu*, DONG Huilin, SU Qin, and Hui DING, 2014: The 30-60-day Intraseasonal Oscillations over the Subtropical Western North Pacific during the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1-7.  doi: 10.1007/s00376-013-3019-x
    [4] ZHAI Guoqing, LI Xiaofan, ZHU Peijun, SHEN Hangfeng, ZHANG Yuanzhi, 2014: Surface Rainfall and Cloud Budgets Associated with Mei-yu Torrential Rainfall over Eastern China during June 2011, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1435-1444.  doi: 10.1007/s00376-014-3256-7
    [5] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [6] Wenshou TIAN, GUO Zhenhai, YU Rucong, 2004: Treatment of LBCs in 2D Simulation of Convection over Hills, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 573-586.  doi: 10.1007/BF02915725
    [7] Ren Baohua, Huang Ronghui, 2002: 10-25-Day Intraseasonal Variations of Convection and Circulation Associated with Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 321-336.  doi: 10.1007/s00376-002-0025-9
    [8] REN Baohua, HUANG Ronghui, 2003: 30-60-day Oscillations of Convection and Circulation Associated with the Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 781-793.  doi: 10.1007/BF02915403
    [9] Iman ROUSTA, Mehdi DOOSTKAMIAN, Esmaeil HAGHIGHI, Hamid Reza GHAFARIAN MALAMIRI, Parvane YARAHMADI, 2017: Analysis of Spatial Autocorrelation Patterns of Heavy and Super-Heavy Rainfall in Iran, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1069-1081.  doi: 10.1007/s00376-017-6227-y
    [10] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [11] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [12] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [13] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [14] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [15] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [16] Rudi XIA, Yali LUO, Da-Lin ZHANG, Mingxin LI, Xinghua BAO, Jisong SUN, 2021: On the Diurnal Cycle of Heavy Rainfall over the Sichuan Basin during 10–18 August 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2183-2200.  doi: 10.1007/s00376-021-1118-7
    [17] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2005: A Case Study on a Strong Tropical Disturbance and Record Heavy Rainfall in Hat Yai, Thailand during the Winter Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 436-450.  doi: 10.1007/BF02918757
    [18] Seung-Woo LEE, Dong-Kyou LEE, Dong-Eon CHANG, 2011: Impact of Horizontal Resolution and Cumulus Parameterization Scheme on the Simulation of Heavy Rainfall Events over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1-15.  doi: 10.1007/s00376-010-9217-x
    [19] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [20] Jeong-Gyun PARK, Dong-Kyou LEE, 2011: Evaluation of Heavy Rainfall Model Forecasts over the Korean Peninsula Using Different Physical Parameterization Schemes and Horizontal Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1233-1245.  doi: 10.1007/s00376-011-0058-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2012
Manuscript revised: 10 May 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Moisture Transport over the Arabian Sea Associated with Summer Rainfall over Pakistan in 1994 and 2002

  • 1. Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of the Chinese Academy of Sciences, Beijing 100049, Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, Pakistan,Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: In this study, we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994, a relatively wet year, and 2002, a relatively dry year. A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted; we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere. Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction (NCEP-I and -II). A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface (E-P) from the divergence of the total moisture transport. Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions. In 1994, Pakistan received more rainfall compared to 2002 during the summer monsoon. Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August. Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal. Moreover, in 1994, a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002. Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon. Finally, from the water budget analysis, it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return