Advanced Search
Article Contents

Modulation of the Arctic Oscillation and the East Asian Winter Climate Relationships by the 11-year Solar Cycle


doi: 10.1007/s00376-011-1095-3

  • The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming appeared in northern Asia in a positive AO phase. This result corresponded to an enhanced anticyclonic flow at 850 hPa over northeastern Asia and a weakened East Asian trough (EAT) at 500 hPa. However, during winters with low solar activity (LS), both the surface warming and the intensities of the anticyclonic flow and the EAT were much less in the presence of a positive AO phase. The possible atmospheric processes for this 11-year solar-cycle modulation may be attributed to the indirect influence that solar activity induces in the structural changes of AO. During HS winters, the sea level pressure oscillation associated with the AO became stronger, with the significant influence of AO extending to East Asia. In the meantime, the AO-related zonal-mean zonal winds tended to extend more into the stratosphere during HS winters, which implies a stronger coupling to the stratosphere. These trends may have led to an enhanced AO phase difference; thus the associated East Asian climate anomalies became larger and more significant. The situation tended to reverse during LS winters. Further analyses revealed that the relationship between the winter AO and surface-climate anomalies in the following spring is also modulated by the 11-year solar cycle, with significant signals appearing only during HS phases. Solar-cycle variation should be taken into consideration when the AO is used to predict winter and spring climate anomalies over East Asia.
  • [1] Shui YU, Jianqi SUN, 2024: Persistent Variations in the East Asian Trough from March to April and the Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 737-753.  doi: 10.1007/s00376-023-3024-7
    [2] ZHOU Xiaomin, LI Shuanglin, LUO Feifei, GAO Yongqi, Tore FUREVIK, 2015: Air-Sea Coupling Enhances the East Asian Winter Climate Response to the Atlantic Multidecadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1647-1659.  doi: 10.1007/s00376-015-5030-x
    [3] WEI Ke, BAO Qing, 2012: Projections of the East Asian Winter Monsoon under the IPCC AR5 Scenarios Using a Coupled Model: IAP-FGOALS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1200-1214.  doi: 10.1007/s00376-012-1226-5
    [4] CHEN Shangfeng, CHEN Wen, WEI Ke, 2013: Recent Trends in Winter Temperature Extremes in Eastern China and their Relationship with the Arctic Oscillation and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1712-1724.  doi: 10.1007/s00376-013-2296-8
    [5] Xu Qun, Yang Qiuming, 1993: Response of the Intensity of Subtropical High in the Northern Hemisphere to Solar Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 325-334.  doi: 10.1007/BF02658138
    [6] Laura DE LA TORRE, Luis GIMENO, Juan Antonio A\~NEL, Raquel NIETO, 2007: The Role of the Solar Cycle in the Relationship Between the North Atlantic Oscillation and Northern Hemisphere Surface Temperatures, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 191-198.  doi: 10.1007/s00376-007-0191-x
    [7] LIU Shan, WANG Huijun, 2013: Transition of Zonal Asymmetry of the Arctic Oscillation and the Antarctic Oscillation at the End of 1970s, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 41-47.  doi: 10.1007/s00376-012-2027-6
    [8] Kairan YING, Jing PENG, Li DAN, Xiaogu ZHENG, 2022: Ocean–atmosphere Teleconnections Play a Key Role in the Interannual Variability of Seasonal Gross Primary Production in China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1329-1342.  doi: 10.1007/s00376-021-1226-4
    [9] Bueh Cholaw, Ji Liren, 1999: The Ocean-Atmosphere Coupled Regimes and East Asian Winter Monsoon (EAWM) Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 91-106.  doi: 10.1007/s00376-999-0006-3
    [10] Jiapeng MIAO, Tao WANG, Huijun WANG, Yongqi GAO, 2018: Influence of Low-frequency Solar Forcing on the East Asian Winter Monsoon Based on HadCM3 and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1205-1215.  doi: 10.1007/s00376-018-7229-0
    [11] WEI Jiangfeng, WANG Huijun, 2004: A Possible Role of Solar Radiation and Ocean in the Mid-Holocene East Asian Monsoon Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 1-12.  doi: 10.1007/BF02915675
    [12] Hengyi WENG, 2003: Impact of the 11-yr Solar Activity on the QBO in the Climate System, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 303-309.  doi: 10.1007/s00376-003-0017-4
    [13] YANG Hui, 2011: The Significant Relationship between the Arctic Oscillation (AO) in December and the January Climate over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 398-407.  doi: 10.1007/s00376-010-0019-y
    [14] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [15] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [16] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [17] Se-Hwan YANG, LU Riyu, 2014: Predictability of the East Asian Winter Monsoon Indices by the Coupled Models of ENSEMBLES, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1279-1292.  doi: 10.1007/s00376-014-4020-8
    [18] Xinping XU, Fei LI, Shengping HE, Huijun WANG, 2018: Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 737-752.  doi: 10.1007/s00376-017-7059-5
    [19] ZENG Gang, Wei-Chyung WANG, SUN Zhaobo, LI Zhongxian, 2011: Atmospheric Circulation Cells Associated with Anomalous East Asian Winter Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 913-926.  doi: 10.1007/s00376-010-0100-6
    [20] YAN Hongming, YANG Hui, YUAN Yuan, LI Chongyin, 2011: Relationship Between East Asian Winter Monsoon and Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1345-1356.  doi: 10.1007/s00376-011-0014-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2012
Manuscript revised: 10 March 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Modulation of the Arctic Oscillation and the East Asian Winter Climate Relationships by the 11-year Solar Cycle

  • 1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190;Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190

Abstract: The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming appeared in northern Asia in a positive AO phase. This result corresponded to an enhanced anticyclonic flow at 850 hPa over northeastern Asia and a weakened East Asian trough (EAT) at 500 hPa. However, during winters with low solar activity (LS), both the surface warming and the intensities of the anticyclonic flow and the EAT were much less in the presence of a positive AO phase. The possible atmospheric processes for this 11-year solar-cycle modulation may be attributed to the indirect influence that solar activity induces in the structural changes of AO. During HS winters, the sea level pressure oscillation associated with the AO became stronger, with the significant influence of AO extending to East Asia. In the meantime, the AO-related zonal-mean zonal winds tended to extend more into the stratosphere during HS winters, which implies a stronger coupling to the stratosphere. These trends may have led to an enhanced AO phase difference; thus the associated East Asian climate anomalies became larger and more significant. The situation tended to reverse during LS winters. Further analyses revealed that the relationship between the winter AO and surface-climate anomalies in the following spring is also modulated by the 11-year solar cycle, with significant signals appearing only during HS phases. Solar-cycle variation should be taken into consideration when the AO is used to predict winter and spring climate anomalies over East Asia.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return