Advanced Search
Article Contents

Paleoclimate Simulations of the Mid-Holocene and Last Glacial Maximum by FGOALS


doi: 10.1007/s00376-012-2177-6

  • Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7oC that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6oC and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23oC and 4.59oC. The sensitivity of precipitation to the changes of TAS is ~2.3% oC-1, which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM.
  • [1] Kaiqing YANG, Dabang JIANG, 2017: Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 497-508.  doi: 10.1007/s00376-016-6075-1
    [2] Weipeng ZHENG, Yongqiang YU, Yihua LUAN, Shuwen ZHAO, Bian HE, Li DONG, Mirong SONG, Pengfei LIN, Hailong LIU, 2020: CAS-FGOALS Datasets for the Two Interglacial Epochs of the Holocene and the Last Interglacial in PMIP4, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1034-1044.  doi: 10.1007/s00376-020-9290-8
    [3] WEI Jiangfeng, WANG Huijun, 2004: A Possible Role of Solar Radiation and Ocean in the Mid-Holocene East Asian Monsoon Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 1-12.  doi: 10.1007/BF02915675
    [4] JIN Liya, WANG Huijun, CHEN Fahu, JIANG Dabang, 2006: A Possible Impact of Cooling over the Tibetan Plateau on the Mid-Holocene East Asian Monsoon Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 543-550.  doi: 10.1007/s00376-006-0543-y
    [5] Wang Huijun, 2000: The Seasonal Climate and Low Frequency Oscillation in the Simulated Mid-Holocene Megathermal Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 445-457.  doi: 10.1007/s00376-000-0035-4
    [6] Wang Huijun, 2002: The Mid-Holocene Climate Simulated by a Grid-Point AGCM Coupled with a Biome Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 205-218.  doi: 10.1007/s00376-002-0017-9
    [7] YU Entao, WANG Tao, GAO Yongqi, and XIANG Weiling, 2014: Precipitation Pattern of the Mid-Holocene Simulated by a High-Resolution Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 962-971.  doi: 10.1007/s00376-013-3178-9
    [8] Pengfei LIN, Bowen ZHAO, Jilin WEI, Hailong LIU, Wenxia ZHANG, Xiaolong CHEN, Jie JIANG, Mengrong DING, Wenmin MAN, Jinrong JIANG, Xu ZHANG, Yuewen DING, Wenrong BAI, Chenyang JIN, Zipeng YU, Yiwen LI, Weipeng ZHENG, Tianjun ZHOU, 2022: The Super-large Ensemble Experiments of CAS FGOALS-g3, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1746-1765.  doi: 10.1007/s00376-022-1439-1
    [9] JIANG Dabang, YU Ge, ZHAO Ping, CHEN Xing, LIU Jian, LIU Xiaodong, WANG Shaowu, ZHANG Zhongshi, YU Yongqiang, LI Yuefeng, JIN Liya, XU Ying, JU Lixia, ZHOU Tianjun, YAN Xiaodong, 2015: Paleoclimate Modeling in China: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 250-275.  doi: 10.1007/s00376-014-0002-0
    [10] Bian HE, Yimin LIU, Guoxiong WU, Qing BAO, Tianjun ZHOU, Xiaofei WU, Lei WANG, Jiandong LI, Xiaocong WANG, Jinxiao LI, Wenting HU, Xiaoqi ZHANG, Chen SHENG, Yiqiong TANG, 2020: CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 18-28.  doi: 10.1007/s00376-019-9085-y
    [11] Ye PU, Hongbo LIU, Ruojing YAN, Hao YANG, Kun XIA, Yiyuan LI, Li DONG, Lijuan LI, He WANG, Yan NIE, Mirong SONG, Jinbo XIE, Shuwen ZHAO, Kangjun CHEN, Bin WANG, Jianghao LI, Ling ZUO, 2020: CAS FGOALS-g3 Model Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP), ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1081-1092.  doi: 10.1007/s00376-020-2032-0
    [12] Yaqi WANG, Zipeng YU, Pengfei LIN, Hailong LIU, Jiangbo JIN, Lijuan LI, Yanli TANG, Li DONG, Kangjun CHEN, Yiwen LI, Qian YANG, Mengrong DING, Yao MENG, Bowen ZHAO, Jilin WEI, Jinfeng MA, Zhikuo SUN, 2020: FGOALS-g3 Model Datasets for CMIP6 Flux-Anomaly-Forced Model Intercomparison Project, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1093-1101.  doi: 10.1007/s00376-020-2045-8
    [13] Yuyang GUO, Yongqiang YU, Pengfei LIN, Hailong LIU, Bian HE, Qing BAO, Bo AN, Shuwen ZHAO, Lijuan HUA, 2020: Simulation and Improvements of Oceanic Circulation and Sea Ice by the Coupled Climate System Model FGOALS-f3-L, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1133-1148.  doi: 10.1007/s00376-020-0006-x
    [14] Yuyang GUO, Yongqiang YU, Pengfei LIN, Hailong LIU, Bian HE, Qing BAO, Shuwen ZHAO, Xiaowei WANG, 2020: Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1057-1066.  doi: 10.1007/s00376-020-2004-4
    [15] Bo AN, Yongqiang YU, Qing BAO, Bian HE, Jinxiao LI, Yihua LUAN, Kangjun CHEN, Weipeng ZHENG, 2022: CAS FGOALS-f3-H Dataset for the High-Resolution Model Intercomparison Project (HighResMIP) Tier 2, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1873-1884.  doi: 10.1007/s00376-022-2030-5
    [16] Kai Chi WONG, Senfeng LIU, Andrew G. TURNER, Reinhard K. SCHIEMANN, 2018: Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1049-1062.  doi: 10.1007/s00376-018-7269-5
    [17] Bian HE, Qing BAO*, Xiaocong WANG, Linjiong ZHOU, Xiaofei WU, Yimin LIU, Guoxiong WU, Kangjun CHEN, Sicheng HE, Wenting HU, Jiandong LI, Jinxiao LI, Guokui NIAN, Lei WANG, Jing YANG, Minghua ZHANG, Xiaoqi ZHANG, 2019: CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, , 771-778.  doi: 10.1007/s00376-019-9027-8
    [18] Shuwen ZHAO, Yongqiang YU, Pengfei LIN, Hailong LIU, Bian HE, Qing BAO, Yuyang GUO, Lijuan HUA, Kangjun CHEN, Xiaowei WANG, 2021: Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) Simulations with the Coupled Model CAS FGOALS-f3-L, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 329-339.  doi: 10.1007/s00376-020-0112-9
    [19] Bian HE, Xiaoqi ZHANG, Anmin DUAN, Qing BAO, Yimin LIU, Wenting HU, Jinxiao LI, Guoxiong WU, 2021: CAS FGOALS-f3-L Large-ensemble Simulations for the CMIP6 Polar Amplification Model Intercomparison Project, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1028-1049.  doi: 10.1007/s00376-021-0343-4
    [20] Min ZHAO, Tie DAI, Hao WANG, Qing BAO, Yimin LIU, Hua ZHANG, Guangyu SHI, 2022: Simulating Aerosol Optical Depth and Direct Radiative Effects over the Tibetan Plateau with a High-Resolution CAS FGOALS-f3 Model, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2137-2155.  doi: 10.1007/s00376-022-1424-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 27 July 2012
Manuscript revised: 14 September 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Paleoclimate Simulations of the Mid-Holocene and Last Glacial Maximum by FGOALS

    Corresponding author: ZHENG Weipeng; 
  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029

Abstract: Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7oC that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6oC and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23oC and 4.59oC. The sensitivity of precipitation to the changes of TAS is ~2.3% oC-1, which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return