Advanced Search
Article Contents

The Natural Oscillation of Two Types of ENSO Events Based on Analyses of CMIP5 Model Control Runs

Fund Project:

doi: 10.1007/s00376-013-3153-5

  • The eastern- and central-Pacific El Ni?o-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.
    摘要: The eastern- and central-Pacific El Ni?o-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.
  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J. Climate, 19, 5816-5842, doi: 10.1175/jcli3937.1.
    Ashok, K.,S. K. Behera,S. A. Rao,H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.
    Ashok, K.,C. Y. Tam, and W. J. Lee, 2009: ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys. Res. Lett., 36, L12705, doi: 10.1029/2009GL038847.
    Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphereocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46(12),1687-1712.
    Bjerknes, J., 1969: Atmospheric teleconnections from the Equatorial Pacific. Mon. Wea. Rev., 97, 163-172, doi: 10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2.
    Choi, J.,S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 2631-2644, doi: 10.1007/s00382-011-1186-y.
    Fu, C. B.,H. F. Diaz, and J. O. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev., 114(9),1716-1739.
    Giese, B. S., and S. Ray, 2011: El Ni&#x000f1;o variability in simple ocean data assimilation (SODA), 1871-2008. J. Geophys. Res., 116, C02024, doi: 10.1029/2010jc006695.
    Ham, Y.-G., and J.-S. Kug, 2011: How well do current climate models simulate two types of El Nino?. Climate Dyn, 39, 383-398, doi: 10.1007/s00382-011-1157-3.
    Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811-829.
    Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: Astripped-down coupled model. J. Atmos. Sci., 54, 830-847.
    Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22(3),615-632, doi: 10.1175/2008jcli2309.1.
    Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi: 10.1029/2012gl052006.
    Kug, J.-S.,F.-F. Jin, and S.-I. An, 2009: Two types of El Ni&#x000f1;o events: cold tongue El Ni&#x000f1;o and warm pool El Ni&#x000f1;o. J. Climate, 22, 1499-1515.
    Kug, J.-S.,Y.-G. Ham,J.-Y. Lee, and F.-F. Jin, 2012: Corrigendum: Improved simulation of two types of El Ni&#x000f1;o in CMIP5 models. Environ. Res. Lett., 7, 039502, doi: 10.1088/1748-9326/7/3/039502.
    Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Ni&#x000f1;o and associated seasonal average U. S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi: 10.1029/2005gl022738.
    Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Ni&#x000f1;o in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi: 10.1029/2010gl044007.
    McPhaden, M. J.,T. Lee, and D. McClurg, 2011: El Ni&#x000f1;o and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011gl048275.
    Philand er, S. G. H.,T. Yamagata, and R. C. Pacanowski, 1984: Unstable air-sea interactions in the Tropics. J. Atmos. Sci., 41, 604-613.
    Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Ni&#x000f1;o. Mon. Wea. Rev., 110, 354-384.
    Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14),4407, doi: 10.1029/2002jd002670.
    Ren, H.-L., and F.-F. Jin, 2011: Ni&#x000f1;o indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010gl046031.
    Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled oceanatmosphere model. J. Atmos. Sci., 45(3),549-566.
    Taylor, K. E.,R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498.
    Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Ni&#x000f1;o evolution. J. Climate, 14, 1697-1701.
    Wang, C. Z., and X. Wang, 2013a: Classifying El Ni&#x000f1;o Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J. Climate, 26, 1322-1338, doi: 10.1175/jcli-d-12-00107.1.
    Wang, D. X.,Y. H. Qin,X. J. Xiao,Z. Q. Zhang, and X. Y. Wu, 2012: El Ni&#x000f1;o and El Ni&#x000f1;o Modoki variability based on a new ocean reanalysis. Ocean Dyn., 62, 1311-1322.
    Wang, X., and C. Z. Wang, 2013b: Different impacts of various El Ni&#x000f1;o events on the Indian Ocean Dipole Climate Dyn., doi: 10.1007/s00382-013-1711-2.
    Wang, X.,D. X. Wang, and W. Zhou, 2009: Decadal variability of twentieth century El Ni&#x000f1;o and La Ni&#x000f1;a occurrence from observations and IPCC AR4 coupled models. Geophys. Res. Lett., 36, L11701, doi: 10.1029/2009GL037929.
    Weng, H. Y.,K. Ashok,S. K. Behera,S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Ni&#x000f1;o Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113-129, doi: 10.1007/s00382-007-0234-0.
    Wyrtki, K., 1975: El Ni&#x000f1;o——The dynamic response of the equatorial Pacific oceanto atmospheric forcing. J. Phys. Oceanogr., 5, 572-584.
    Xiang, B. Q.,B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central pacific warming after the late 1990s. Climate Dyn. 41(2), 327-340, doi: 10.1007/s00382-012-1427-8.
    Xu, K.,C. W. Zhu, and J. H. He, 2012: Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events. Chinese Science Bulletin, 57, 3491-3496, doi: 10.1007/s11434-012-5173-4.
    Xu, K.,C. W. Zhu, and J. H. He, 2013: Two types of El Ni&#x000f1;o-related Southern Oscillation and their different impacts on global land precipitation. Adv. Atmos. Sci., 30, 1743-1757, doi: 10.1007/s00376-013-2272-3.
    Yeh, S.-W.,J.-S. Kug,B. Dewitte,M.-H. Kwon,B. P. Kirtman, and F.-F. Jin, 2009: El Ni&#x000f1;o in a changing climate. Nature, 461, 511-514, doi: 10.1038/nature08316.
    Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J. Geophys. Res., 112, D13106, doi: 10.1029/2006jd007654.
    Yu, J.-Y., and S. T. Kim, 2010: Identification of central-pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett., 37, doi: 10.1029/2010GL044082.
    Yu, J.-Y., and S. T. Kim, 2013: Identifying the types of major El Ni&#x000f1;o events since 1870. Int. J. Climatol., 33, 2105-2112, doi: 10.1002/joc.3575.
    Yu, J.-Y.,H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the Central Equatorial Pacific. J. Climate, 23, 2869-2884, doi: 10.1175/2010jcli3171.1.
  • [1] Renping LIN, Fei ZHENG, Xiao DONG, 2018: ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 495-506.  doi: 10.1007/s00376-017-7133-z
    [2] Yuanxin LIU, Lijing CHENG, Yuying PAN, Zhetao TAN, John ABRAHAM, Bin ZHANG, Jiang ZHU, Junqiang SONG, 2022: How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1650-1672.  doi: 10.1007/s00376-022-1381-2
    [3] Zhe HAN, Feifei LUO, Shuanglin LI, Yongqi GAO, Tore FUREVIK, Lea SVENDSEN, 2016: Simulation by CMIP5 Models of the Atlantic Multidecadal Oscillation and Its Climate Impacts, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1329-1342.  doi: 10.1007/s00376-016-5270-4
    [4] Yan SUN, Fan WANG, De-Zheng SUN, 2016: Weak ENSO Asymmetry Due to Weak Nonlinear Air-Sea Interaction in CMIP5 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 352-364.  doi: 10.1007/s00376-015-5018-6
    [5] LIU Yonghe, FENG Jinming, MA Zhuguo, 2014: An Analysis of Historical and Future Temperature Fluctuations over China Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 457-467.  doi: 10.1007/s00376-013-3093-0
    [6] YANG Shili, FENG Jinming, DONG Wenjie, CHOU Jieming, 2014: Analyses of Extreme Climate Events over China Based on CMIP5 Historical and Future Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1209-1220.  doi: 10.1007/s00376-014-3119-2
    [7] Xiaolei CHEN, Yimin LIU, Guoxiong WU, 2017: Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1447-1460.  doi: 10.1007s00376-017-6326-9
    [8] Yuanhai FU, Riyu LU, Dong GUO, 2021: Projected Increase in Probability of East Asian Heavy Rainy Summer in the 21st Century by CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1635-1650.  doi: 10.1007/s00376-021-0347-0
    [9] Huanhuan ZHU, Zhihong JIANG, Juan LI, Wei LI, Cenxiao SUN, Laurent LI, 2020: Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1119-1132.  doi: 10.1007/s00376-020-9289-1
    [10] FENG Juan, LI Jianping, ZHU Jianlei, LI Fei, SUN Cheng, 2015: Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1129-1142.  doi: 10.1007/s00376-015-4157-0
    [11] SONG Yi, YU Yongqiang, LIN Pengfei, 2014: The Hiatus and Accelerated Warming Decades in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1316-1330.  doi: 10.1007/s00376-014-3265-6
    [12] JI Mingxia, HUANG Jianping, XIE Yongkun, LIU Jun, 2015: Comparison of Dryland Climate Change in Observations and CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1565-1574.  doi: 10.1007/s00376-015-4267-8
    [13] ZHANG Jie, Laurent LI, ZHOU Tianjun, XIN Xiaoge, 2013: Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1587-1600.  doi: 10.1007/s00376-013-2139-7
    [14] REN Rongcai, YANG Yang, 2012: Changes in Winter Stratospheric Circulation in CMIP5 Scenarios Simulated by the Climate System Model FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1374-1389.  doi: 10.1007/s00376-012-1184-y
    [15] TIAN Di, GUO Yan*, DONG Wenjie, 2015: Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 487-496.  doi: 10.1007/s00376-014-4102-7
    [16] Jun YING, Ping HUANG, Ronghui HUANG, 2016: Evaluating the Formation Mechanisms of the Equatorial Pacific SST Warming Pattern in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 433-441.  doi: 10.1007/s00376-015-5184-6
    [17] Xiao-Tong ZHENG, Lihui GAO, Gen LI, Yan DU, 2016: The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 489-503.  doi: 10.1007/s00376-015-5076-9
    [18] ZHI Hai, ZHANG Rong-Hua, LIN Pengfei, WANG Lanning, 2015: Quantitative Analysis of the Feedback Induced by the Freshwater Flux in the Tropical Pacific Using CMIP5, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1341-1353.  doi: 10.1007/s00376-015-5064-0
    [19] SONG Yajuan, WANG Lei, LEI Xiaoyan, WANG Xidong, 2015: Tropical Cyclone Genesis Potential Index over the Western North Pacific Simulated by CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1539-1550.  doi: 10.1007/s00376-015-4162-3
    [20] CAO Ning, REN Baohua, ZHENG Jianqiu, 2015: Evaluation of CMIP5 Climate Models in Simulating 1979-2005 Oceanic Latent Heat Flux over the Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1603-1616.  doi: 10.1007/s00376-015-5016-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 22 July 2013
Manuscript revised: 16 October 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Natural Oscillation of Two Types of ENSO Events Based on Analyses of CMIP5 Model Control Runs

    Corresponding author: SU Jingzhi; 
  • 1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301
  • 2. Institute of Climate Systems, Chinese Academy of Meteorological Sciences, Beijing 100081
  • 3. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044
Fund Project:  The authors acknowledge the anonymous reviewers for their helpful comments and suggestions. This study was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41221064, 41376020, 41376025, and 90711003), the key program of 2012Z001 and 2013Z002 in the Chinese Academy of Meteorological Science, and the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues'' of the Chinese Academy of Sciences (Grant No. XDA05090400). This study was also supported by the Jiangsu Collaborative Innovation Center for Climate Change.

Abstract: The eastern- and central-Pacific El Ni?o-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.

摘要: The eastern- and central-Pacific El Ni?o-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint