Statistical Characteristics of Cloud Precipitation in the Motuo Area Observed by X-band Dual-Polarization Phased Array Radar
-
摘要: 第二次青藏高原综合科学考察研究项目在墨脱布设了一部X波段相控阵偏振雷达(X-PAR),实现了首次对河谷地区云降水的雷达连续观测。为了揭示高原东南河谷地区云降水的宏观特征,本文利用墨脱X-PAR 2019年11月至2020年10月的观测数据定量分析了墨脱地区云降水回波强度、回波顶高等参数的月变化、日变化和高度变化,并与那曲地区夏季季风时期多普勒雷达观测数据进行了比较。研究发现:(1)墨脱地区回波顶高、面积、强回波所占比例以及回波分布范围在4~10月大于11~3月,4~10月降水频次高、对流性降水多,其中以6月最为显著。而进入4月后弱回波数量的大幅度增加导致了4~10月回波强度小于11~3月。降水回波月变化特征结合高原季风指数,将一年分为旱季(11~3月)与雨季(4~10月)。(2)雨季降水回波频次、顶高、面积均大于旱季,说明雨季降水频次更高、对流性活动更旺盛。降水回波频次、顶高、面积的日变化表明,旱季日降水主要发生在下午与上半夜,雨季主要发生在下半夜。(3)墨脱降水回波强度大部分小于30 dBZ,旱季在海拔高度3 km以上回波发生频次高,雨季在3 km以下高。(4)夏季季风期间墨脱回波顶高低于那曲,其顶高、面积日变化趋势与那曲不同。夏季季风期间那曲日降水主要集中在下午与上半夜,而墨脱则集中在下半夜。墨脱旱季云降水特征与那曲夏季季风时期特征较为相似。Abstract: During the second comprehensive scientific expedition to the Qinghai Tibet Plateau, an X-band phased array polarimetric radar (X-PAR) was installed in Motuo. For the first time, the most advanced dual-polarization phased array radar is used to continuously observe the precipitation in the valley area. The monthly, diurnal, and altitude variations of echo intensity and echo top height of precipitation in Motuo were quantitatively analyzed using the observation data of Motuo X-PAR from November 2019 to October 2020 to reveal the characteristics of precipitation in the southeast valley of the plateau. The results are then compared to those obtained using Doppler radar during the summer monsoon in Naqu. The results show that: (1) The echo peak height, echo area, proportion of strong echo, and echo distribution range from April to October are greater than those from November to March in Motuo, indicating that the precipitation frequency is high and convective precipitation is more from April to October, particularly in June. However, the increase in the number of weak echoes in April shows that the echo intensity from April to October is less than from November to March. According to the monthly variation characteristics of cloud precipitation in Motuo and the plateau monsoon index, the year is divided into the dry season (November to March) and the rainy season (April to October). (2) The echo frequency, top height, and area of precipitation in the rainy season are higher than those in the dry season. The diurnal variations of echo frequency, top height, and area show that the strongest convection occurs in the afternoon in both seasons. Precipitation occurs primarily in the afternoon and first half of the night during the dry season and in the second half of the night during the rainy season. (3) In Motuo, the echo intensity of precipitation is mostly less than 30 dBZ. The echo frequency is higher both in dry and rainy seasons for altitude >3 km and <3 km, respectively. (4) During the summer monsoon, the echo peak height of Motuo is lower than that of Naqu, and the diurnal variation trend of its peak height and area differs from that of Naqu. Besides, daily precipitation in Naqu is primarily concentrated in the afternoon and the first half of the night. In contrast, precipitation in Motuo is focused mainly in the second half of the night. The characteristics of cloud precipitation in the dry season of Motuo are similar to those in the summer monsoon period of Naqu.
-
图 1 青藏高原地形(阴影,单位:m)与墨脱站地理位置(29°18′46″N,95°19′03″E,海拔高度为1305 m)以及2019年11月至2020年10月平均整层水汽通量(箭头,单位:kg m−1 s−1)
Figure 1. Topography of Qinghai–Tibet Plateau (shaded, units: m), geographical location of Motuo (29°18′46″N,95°19′03″E, 1305 m ASL), and average whole layer water vapor flux from November 2019 to October 2020 (arrow, units: kg m−1 s−1)
图 3 2020年10月4日04:53:46 X-PAR观测第7层仰角(10.7°)的(a)ZH,(b)ZDR,(c)ρhv,(d)KDP,除掉地物杂点回波的(e)ZH,(f)ZDR,(g)ρhv,(h)KDP。红圈位置为地物和杂点
Figure 3. Plan position indicator (PPI) of (a) ZH, (b) ZDR, (c) ρhv, and (d) KDP at the elevation of the 7th layer (10.7°) observed by X-PAR on October 4, 2020, at 0453:46 BJT; (e) ZH, (f) ZDR, (g) ρhv, and (h) KDP are those whose ground clutter and spurious echo have been removed. The position of the red circle is the echo of ground clutter and spurious
图 4 部分高度层X-PAR有效探测回波范围(黑色为可探测到的区域):(a)2 km;(b)3 km;(c)4 km;(d)5 km;(e)9 km;(f)10 km;(g)11 km;(h)12 km
Figure 4. Effective detection echo range of X-PAR is in some altitude layers (black area represents the detectable area): (a) 2 km; (b) 3 km; (c) 4 km; (d) 5 km; (e) 9 km; (f) 10 km; (g) 11 km; (h) 12 km
图 8 观测数据箱型图的逐月变化,箱型图中最高最低两点分别为最大值和最小值,盒子上下横线分别为上四分位数点(75%)与下四分位数点(25%),盒子中间横线为中位数点。(a)回波强度,图中折线为月平均回波强度的连线;(b)回波顶高,折线为月平均回波顶高的连线;(c)回波面积,折线为月平均回波面积值连线;(d)强回波发生频率,折线为每月强回波发生频率平均值的连线
Figure 8. Monthly variation of box chart of observational data; the highest and lowest points in the box diagram indicate the maximum and minimum values, upper and lower horizontal lines of the box represent the upper quartile points (75%) and lower quartile points (25%), respectively, and the middle line of the box represents the median point. (a) echo intensity, the line is the average of echo intensity per month in the figure; (b) echo top height, the line is the average of echo top height per month; (c) echo area, the line is the average of echo area per month; and (d) frequency of strong echo, the line is the average of the frequency of strong echo per month
表 1 X-PAR雷达参数
Table 1. The parameters of X-PAR
主要参数 参数设置 工作频率 9.3~9.5 GHz 峰值功率 256 W 观测用时 92 s 最大探测距离 42 km 最小距离分辨率 30 m 仰角扫描范围 0.9°~20.7°,以1.8°的步进角扫描 波束宽度 3° 阵面法向角 15° 观测模式 VRHI 偏振体制 双发双收 -
[1] Barros A P, Kim G, Williams E, et al. 2004. Probing orographic controls in the Himalayas during the monsoon using satellite imagery [J]. Nat. Hazards Earth Syst. Sci., 4(1): 29−51. doi: 10.5194/nhess-4-29-2004 [2] Bhatt B C, Nakamura K. 2005. Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar [J]. Mon. Wea. Rev., 133(1): 149−165. doi: 10.1175/MWR-2846.1 [3] Bhatt B C, Nakamura K. 2006. A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas [J]. J. Geophys. Res., 111(D2): D02115. doi: 10.1029/2005JD006197 [4] 常祎, 郭学良. 2016. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征 [J]. 科学通报, 61(15): 1706−1720. doi: 10.1360/N972015-01292Chang Y, Guo X L. 2016. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 61(15): 1706−1720. doi: 10.1360/N972015-01292 [5] 陈萍, 李波. 2018. 藏东南水汽输送特征分析及其影响 [J]. 南方农业, 12(9): 124−125. doi: 10.19415/j.cnki.1673-890x.2018.09.066Chen P, Li B. 2018. Characteristics of water vapor transport in Southeast Tibet and its influence [J]. South China Agriculture (in Chinese), 12(9): 124−125. doi: 10.19415/j.cnki.1673-890x.2018.09.066 [6] Chen H M, Yuan W H, Li J, et al. 2012. A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan Plateau [J]. Adv. Atmos. Sci., 29(1): 193−200. doi: 10.1007/s00376-011-0218-1 [7] Chen Y L, Fu Y F, Tao X, et al. 2017. Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat [J]. Int. J. Climatol., 37(11): 4043−4052. doi: 10.1002/joc.4992 [8] 冯锦明, 刘黎平, 王致君, 等. 2002. 青藏高原那曲地区雨季雷达回波、降水和部分热力参量的统计特征 [J]. 高原气象, 21(4): 368−374. doi: 10.3321/j.issn:1000-0534.2002.04.005Feng J M, Liu L P, Wang Z J, et al. 2002. The statistic characteristics of radar echo and precipitation and some thermodynamic variables in Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 21(4): 368−374. doi: 10.3321/j.issn:1000-0534.2002.04.005 [9] Fu Y F, Pan X, Xian T, et al. 2018. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS [J]. Climate Dyn., 51(5–6): 1971–1989. doi:10.1007/s00382-017-3992-3 [10] Fujinami H, Nomura S, Yasunari T. 2005. Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer [J]. SOLA, 1: 49−52. doi: 10.2151/sola.2005-014 [11] 高登义, 邹捍, 王维. 1985. 雅鲁藏布江水汽通道对降水的影响 [J]. 山地研究, 3(4): 239−249.Gao D Y, Zou H, Wang W. 1985. Influence of water vapor pass along the Yarlungzangbo River on precipitation [J]. Mount. Res. (in Chinese), 3(4): 239−249. [12] Kuo H L, Qian Y F. 1981. Influence of the Tibetian Plateau on cumulative and diurnal changes of weather and climate in summer [J]. Mon. Wea. Rev., 109(11): 2337−2356. doi: 10.1175/1520-0493(1981)109<2337:IOTTPO>2.0.CO;2 [13] Kurosaki Y, Kimura F. 2002. Relationship between topography and daytime cloud activity around Tibetan Plateau [J]. J. Meteor. Soc. Japan, 80(6): 1339−1355. doi: 10.2151/jmsj.80.1339 [14] Liu L P, Feng J M, Chu R Z, et al. 2002. The diurnal variation of precipitation in monsoon season in the Tibetan Plateau [J]. Adv. Atmos. Sci., 19: 365−378. doi: 10.1007/s00376-002-0028-6 [15] Park S G, Maki M, Iwanami K, et al. 2005. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application [J]. J. Atmos. Oceanic Technol., 22(11): 1633−1655. doi: 10.1175/JTECH1804.1 [16] Shimizu S, Ueno K, Fujii H, et al. 2001. Mesoscale characteristics and structures of stratiform precipitation on the Tibetan Plateau [J]. J. Meteor. Soc. Japan, 79(1B): 435−461. doi: 10.2151/jmsj.79.435 [17] Singh P, Nakamura K. 2009. Diurnal variation in summer precipitation over the central Tibetan Plateau [J]. J. Geophys. Res., 114(D20): D20107. doi: 10.1029/2009JD011788 [18] 谭瑞婷, 冼桃, 傅云飞. 2018. CPR雷达探测北半球夏季多层云系结构统计特征分析 [J]. 气候与环境研究, 23(1): 124−138. doi: 10.3878/j.issn.1006-9585.2017.17033Tan R T, Xian T, Fu Y F. 2018. Structures of multi-layer clouds in boreal summer based on CPR radar measurements [J]. Climatic and Environmental Research (in Chinese), 23(1): 124−138. doi: 10.3878/j.issn.1006-9585.2017.17033 [19] Testud J, Le Bouar E, Obligis E, et al. 2000. The rain profiling algorithm applied to polarimetric weather radar [J]. J. Atmos. Oceanic Technol., 17(3): 332−356. doi: 10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2 [20] Ueno K, Fujii H, Yamada H, et al. 2001. Weak and frequent monsoon precipitation over the Tibetan Plateau [J]. J. Meteor. Soc. Japan, 79(1B): 419−434. doi: 10.2151/jmsj.79.419 [21] Uyeda H, Yamada H, Horikomi J, et al. 2001. Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP [J]. J. Meteor. Soc. Japan, 79(1B): 463−474. doi: 10.2151/jmsj.79.463 [22] Wang C C, Chen G T J, Carbone R E. 2004. A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations [J]. Mon. Wea. Rev., 132(7): 1606−1629. doi: 10.1175/1520-0493(2004)132<1606:acowcp>2.0.co;2 [23] Webster P J, Magana V O, Palmer T N, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction [J]. J. Geophys. Res., 103(C7): 14451−14510. doi: 10.1029/97JC02719 [24] 魏丽, 钟强. 1997. 青藏高原云的气候学特征 [J]. 高原气象, 16(1): 10−15. doi: 10.3321/j.issn:1000-0534.1997.01.002Wei L, Zhong Q. 1997. Characteristics of cloud climatology over Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 16(1): 10−15. doi: 10.3321/j.issn:1000-0534.1997.01.002 [25] 肖艳姣, 刘黎平. 2006. 新一代天气雷达网资料的三维格点化及拼图方法研究 [J]. 气象学报, 64(5): 647−657. doi: 10.3321/j.issn:0577-6619.2006.05.011Xiao Y J, Liu L P. 2006. Study of methods for interpolating data from weather radar network to 3-D grid and mosaics [J]. Acta Meteor. Sinica (in Chinese), 64(5): 647−657. doi: 10.3321/j.issn:0577-6619.2006.05.011 [26] Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon [J]. J. Meteor. Soc. Japan, 70(1B): 319−351. doi: 10.2151/jmsj1965.70.1B_319 [27] Yu R C, Wang B, Zhou T J. 2004. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau [J]. J. Climate, 17(13): 2702−2713. doi: 10.1175/1520-0442(2004)017<2702:ceotdc>2.0.co;2 [28] Yu R C, Zhou T J, Xiong A Y, et al. 2007. Diurnal variations of summer precipitation over contiguous China [J]. Geophys. Res. Lett., 34(1): L01704. doi: 10.1029/2006GL028129 [29] 俞小鼎, 姚秀萍, 熊廷南, 等. 2007. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 185Yu X D, Yao X P, Xiong T N, et al. 2007. Principle and Application of Doppler Weather Radar (in Chinese) [M]. Beijing: China Meteorological Press, 185. [30] Yu L, Fu Y F, Yang Y J, et al. 2020. Trumpet-shaped topography modulation of the frequency, vertical structures, and water path of cloud systems in the summertime over the southeastern Tibetan Plateau: A perspective of daytime–nighttime differences [J]. J. Geophys. Res., 125(3): e2019JD031803. doi: 10.1029/2019JD031803 [31] 张蔚然, 吴翀, 刘黎平, 等. 2021. 双偏振相控阵雷达与业务雷达的定量对比及观测精度研究 [J]. 高原气象, 40(2): 424−435. doi: 10.7522/j.issn.1000-0534.2020.00056Zhang W R, Wu C, Liu L P, et al. 2021. Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar [J]. Plateau Meteorology (in Chinese), 40(2): 424−435. doi: 10.7522/j.issn.1000-0534.2020.00056 [32] Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations [J]. J. Climate, 21(16): 3997−4010. doi: 10.1175/2008JCLI2028.1 [33] Zhou J, Wen J, Wang X, et al. 2017. Analysis of the Qinghai–Xizang Plateau monsoon evolution and its linkages with soil moisture [J]. Remote Sens., 8(6): 493. doi: 10.3390/rs8060493 -