高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段相控阵偏振雷达观测墨脱地区云降水宏观特征的统计研究

张蔚然 刘黎平 吴翀

张蔚然, 刘黎平, 吴翀. 2023. X波段相控阵偏振雷达观测墨脱地区云降水宏观特征的统计研究[J]. 大气科学, 47(1): 70−85 doi: 10.3878/j.issn.1006-9895.2109.21050
引用本文: 张蔚然, 刘黎平, 吴翀. 2023. X波段相控阵偏振雷达观测墨脱地区云降水宏观特征的统计研究[J]. 大气科学, 47(1): 70−85 doi: 10.3878/j.issn.1006-9895.2109.21050
ZHANG Weiran, LIU Liping, WU Chong. 2023. Statistical Characteristics of Cloud Precipitation in the Motuo Area Observed by X-band Dual-Polarization Phased Array Radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(1): 70−85 doi: 10.3878/j.issn.1006-9895.2109.21050
Citation: ZHANG Weiran, LIU Liping, WU Chong. 2023. Statistical Characteristics of Cloud Precipitation in the Motuo Area Observed by X-band Dual-Polarization Phased Array Radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(1): 70−85 doi: 10.3878/j.issn.1006-9895.2109.21050

X波段相控阵偏振雷达观测墨脱地区云降水宏观特征的统计研究

doi: 10.3878/j.issn.1006-9895.2109.21050
基金项目: 第二次青藏高原综合科学考察研究项目专题“西风—季风协同作用对亚洲水塔变化的影响”,国家自然科学基金项目91837310
详细信息
    作者简介:

    张蔚然,女,1996年出生,硕士研究生,主要从事雷达气象研究。E-mail: 18751901557@163.com

    通讯作者:

    刘黎平,E-mail: liulp@cma.gov.cn

  • 中图分类号: P412

Statistical Characteristics of Cloud Precipitation in the Motuo Area Observed by X-band Dual-Polarization Phased Array Radar

Funds: Project of "the Influence of Westerly Monsoon Synergy on Asian Water Tower Change" of the Second Comprehensive Scientific Expedition on Qinghai–Tibet Plateaua, National Natural Science Foundation of China (Grant 91837310)
  • 摘要: 第二次青藏高原综合科学考察研究项目在墨脱布设了一部X波段相控阵偏振雷达(X-PAR),实现了首次对河谷地区云降水的雷达连续观测。为了揭示高原东南河谷地区云降水的宏观特征,本文利用墨脱X-PAR 2019年11月至2020年10月的观测数据定量分析了墨脱地区云降水回波强度、回波顶高等参数的月变化、日变化和高度变化,并与那曲地区夏季季风时期多普勒雷达观测数据进行了比较。研究发现:(1)墨脱地区回波顶高、面积、强回波所占比例以及回波分布范围在4~10月大于11~3月,4~10月降水频次高、对流性降水多,其中以6月最为显著。而进入4月后弱回波数量的大幅度增加导致了4~10月回波强度小于11~3月。降水回波月变化特征结合高原季风指数,将一年分为旱季(11~3月)与雨季(4~10月)。(2)雨季降水回波频次、顶高、面积均大于旱季,说明雨季降水频次更高、对流性活动更旺盛。降水回波频次、顶高、面积的日变化表明,旱季日降水主要发生在下午与上半夜,雨季主要发生在下半夜。(3)墨脱降水回波强度大部分小于30 dBZ,旱季在海拔高度3 km以上回波发生频次高,雨季在3 km以下高。(4)夏季季风期间墨脱回波顶高低于那曲,其顶高、面积日变化趋势与那曲不同。夏季季风期间那曲日降水主要集中在下午与上半夜,而墨脱则集中在下半夜。墨脱旱季云降水特征与那曲夏季季风时期特征较为相似。
  • 图  1  青藏高原地形(阴影,单位:m)与墨脱站地理位置(29°18′46″N,95°19′03″E,海拔高度为1305 m)以及2019年11月至2020年10月平均整层水汽通量(箭头,单位:kg m−1 s−1

    Figure  1.  Topography of Qinghai–Tibet Plateau (shaded, units: m), geographical location of Motuo (29°18′46″N,95°19′03″E, 1305 m ASL), and average whole layer water vapor flux from November 2019 to October 2020 (arrow, units: kg m−1 s−1)

    图  2  观测区地形示意图

    Figure  2.  Terrain of the observation region

    图  3  2020年10月4日04:53:46 X-PAR观测第7层仰角(10.7°)的(a)ZH,(b)ZDR,(c)ρhv,(d)KDP,除掉地物杂点回波的(e)ZH,(f)ZDR,(g)ρhv,(h)KDP。红圈位置为地物和杂点

    Figure  3.  Plan position indicator (PPI) of (a) ZH, (b) ZDR, (c) ρhv, and (d) KDP at the elevation of the 7th layer (10.7°) observed by X-PAR on October 4, 2020, at 0453:46 BJT; (e) ZH, (f) ZDR, (g) ρhv, and (h) KDP are those whose ground clutter and spurious echo have been removed. The position of the red circle is the echo of ground clutter and spurious

    图  4  部分高度层X-PAR有效探测回波范围(黑色为可探测到的区域):(a)2 km;(b)3 km;(c)4 km;(d)5 km;(e)9 km;(f)10 km;(g)11 km;(h)12 km

    Figure  4.  Effective detection echo range of X-PAR is in some altitude layers (black area represents the detectable area): (a) 2 km; (b) 3 km; (c) 4 km; (d) 5 km; (e) 9 km; (f) 10 km; (g) 11 km; (h) 12 km

    图  5  墨脱X-PAR海拔高度可探测点数廓线图(高度分辨率:100 m)

    Figure  5.  Profile of detectable points of Motuo X-PAR with altitude (Height resolution: 100 m)

    图  6  不同月份(a)回波强度与(b)回波顶高发生频率的分布

    Figure  6.  Frequency distribution of (a) echo intensity and (b) echo top height in different months

    图  7  墨脱站月降水量随时间变化

    Figure  7.  Time variation diagram of monthly precipitation at Motuo station

    图  8  观测数据箱型图的逐月变化,箱型图中最高最低两点分别为最大值和最小值,盒子上下横线分别为上四分位数点(75%)与下四分位数点(25%),盒子中间横线为中位数点。(a)回波强度,图中折线为月平均回波强度的连线;(b)回波顶高,折线为月平均回波顶高的连线;(c)回波面积,折线为月平均回波面积值连线;(d)强回波发生频率,折线为每月强回波发生频率平均值的连线

    Figure  8.  Monthly variation of box chart of observational data; the highest and lowest points in the box diagram indicate the maximum and minimum values, upper and lower horizontal lines of the box represent the upper quartile points (75%) and lower quartile points (25%), respectively, and the middle line of the box represents the median point. (a) echo intensity, the line is the average of echo intensity per month in the figure; (b) echo top height, the line is the average of echo top height per month; (c) echo area, the line is the average of echo area per month; and (d) frequency of strong echo, the line is the average of the frequency of strong echo per month

    图  9  不同时间回波强度、顶高发生频率分布:(a)旱季回波强度;(b)雨季回波强度;(c)旱季回波顶高;(d)雨季回波顶高

    Figure  9.  Frequency distribution of echo intensity and echo top height at different time. Echo intensity in (a) dry season and (b) rainy season; echo top height in (c) the dry season and (d) the rainy season

    图  10  观测数据平均值的日变化:(a)回波强度;(b)回波顶高;(c)回波面积;(d)强回波发生频率

    Figure  10.  Daily variation of the average of the observed data: (a) Echo intensity; (b) echo top height; (c) echo area; (d) frequency of strong echo

    图  11  观测时间段内回波强度的垂直分布:(a)旱季;(b)雨季

    Figure  11.  Vertical distribution of echo intensity in observation period during (a) the dry season and (b) the rainy season

    图  12  旱季回波强度垂直分布的逐时变化

    Figure  12.  Hourly variation of the vertical distribution of echo intensity in the dry season

    图  13  雨季回波强度垂直分布的逐时变化

    Figure  13.  Hourly variation of the vertical distribution of echo intensity in the rainy season

    图  14  夏季季风期间(6~8月)(a)平均回波顶高、(b)平均回波面积日变化曲线与不同时间(c)回波强度与(d)回波顶高的分布

    Figure  14.  Diurnal variation of the average of (a) echo intensity and (b) echo area, and the distribution of (c) echo intensity and (d) echo top height at different time during the summer monsoon (June–August)

    表  1  X-PAR雷达参数

    Table  1.   The parameters of X-PAR

    主要参数参数设置
    工作频率9.3~9.5 GHz
    峰值功率256 W
    观测用时92 s
    最大探测距离42 km
    最小距离分辨率30 m
    仰角扫描范围0.9°~20.7°,以1.8°的步进角扫描
    波束宽度
    阵面法向角15°
    观测模式VRHI
    偏振体制双发双收
    下载: 导出CSV
  • [1] Barros A P, Kim G, Williams E, et al. 2004. Probing orographic controls in the Himalayas during the monsoon using satellite imagery [J]. Nat. Hazards Earth Syst. Sci., 4(1): 29−51. doi: 10.5194/nhess-4-29-2004
    [2] Bhatt B C, Nakamura K. 2005. Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar [J]. Mon. Wea. Rev., 133(1): 149−165. doi: 10.1175/MWR-2846.1
    [3] Bhatt B C, Nakamura K. 2006. A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas [J]. J. Geophys. Res., 111(D2): D02115. doi: 10.1029/2005JD006197
    [4] 常祎, 郭学良. 2016. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征 [J]. 科学通报, 61(15): 1706−1720. doi: 10.1360/N972015-01292

    Chang Y, Guo X L. 2016. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 61(15): 1706−1720. doi: 10.1360/N972015-01292
    [5] 陈萍, 李波. 2018. 藏东南水汽输送特征分析及其影响 [J]. 南方农业, 12(9): 124−125. doi: 10.19415/j.cnki.1673-890x.2018.09.066

    Chen P, Li B. 2018. Characteristics of water vapor transport in Southeast Tibet and its influence [J]. South China Agriculture (in Chinese), 12(9): 124−125. doi: 10.19415/j.cnki.1673-890x.2018.09.066
    [6] Chen H M, Yuan W H, Li J, et al. 2012. A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan Plateau [J]. Adv. Atmos. Sci., 29(1): 193−200. doi: 10.1007/s00376-011-0218-1
    [7] Chen Y L, Fu Y F, Tao X, et al. 2017. Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat [J]. Int. J. Climatol., 37(11): 4043−4052. doi: 10.1002/joc.4992
    [8] 冯锦明, 刘黎平, 王致君, 等. 2002. 青藏高原那曲地区雨季雷达回波、降水和部分热力参量的统计特征 [J]. 高原气象, 21(4): 368−374. doi: 10.3321/j.issn:1000-0534.2002.04.005

    Feng J M, Liu L P, Wang Z J, et al. 2002. The statistic characteristics of radar echo and precipitation and some thermodynamic variables in Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 21(4): 368−374. doi: 10.3321/j.issn:1000-0534.2002.04.005
    [9] Fu Y F, Pan X, Xian T, et al. 2018. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS [J]. Climate Dyn., 51(5–6): 1971–1989. doi:10.1007/s00382-017-3992-3
    [10] Fujinami H, Nomura S, Yasunari T. 2005. Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer [J]. SOLA, 1: 49−52. doi: 10.2151/sola.2005-014
    [11] 高登义, 邹捍, 王维. 1985. 雅鲁藏布江水汽通道对降水的影响 [J]. 山地研究, 3(4): 239−249.

    Gao D Y, Zou H, Wang W. 1985. Influence of water vapor pass along the Yarlungzangbo River on precipitation [J]. Mount. Res. (in Chinese), 3(4): 239−249.
    [12] Kuo H L, Qian Y F. 1981. Influence of the Tibetian Plateau on cumulative and diurnal changes of weather and climate in summer [J]. Mon. Wea. Rev., 109(11): 2337−2356. doi: 10.1175/1520-0493(1981)109<2337:IOTTPO>2.0.CO;2
    [13] Kurosaki Y, Kimura F. 2002. Relationship between topography and daytime cloud activity around Tibetan Plateau [J]. J. Meteor. Soc. Japan, 80(6): 1339−1355. doi: 10.2151/jmsj.80.1339
    [14] Liu L P, Feng J M, Chu R Z, et al. 2002. The diurnal variation of precipitation in monsoon season in the Tibetan Plateau [J]. Adv. Atmos. Sci., 19: 365−378. doi: 10.1007/s00376-002-0028-6
    [15] Park S G, Maki M, Iwanami K, et al. 2005. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application [J]. J. Atmos. Oceanic Technol., 22(11): 1633−1655. doi: 10.1175/JTECH1804.1
    [16] Shimizu S, Ueno K, Fujii H, et al. 2001. Mesoscale characteristics and structures of stratiform precipitation on the Tibetan Plateau [J]. J. Meteor. Soc. Japan, 79(1B): 435−461. doi: 10.2151/jmsj.79.435
    [17] Singh P, Nakamura K. 2009. Diurnal variation in summer precipitation over the central Tibetan Plateau [J]. J. Geophys. Res., 114(D20): D20107. doi: 10.1029/2009JD011788
    [18] 谭瑞婷, 冼桃, 傅云飞. 2018. CPR雷达探测北半球夏季多层云系结构统计特征分析 [J]. 气候与环境研究, 23(1): 124−138. doi: 10.3878/j.issn.1006-9585.2017.17033

    Tan R T, Xian T, Fu Y F. 2018. Structures of multi-layer clouds in boreal summer based on CPR radar measurements [J]. Climatic and Environmental Research (in Chinese), 23(1): 124−138. doi: 10.3878/j.issn.1006-9585.2017.17033
    [19] Testud J, Le Bouar E, Obligis E, et al. 2000. The rain profiling algorithm applied to polarimetric weather radar [J]. J. Atmos. Oceanic Technol., 17(3): 332−356. doi: 10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2
    [20] Ueno K, Fujii H, Yamada H, et al. 2001. Weak and frequent monsoon precipitation over the Tibetan Plateau [J]. J. Meteor. Soc. Japan, 79(1B): 419−434. doi: 10.2151/jmsj.79.419
    [21] Uyeda H, Yamada H, Horikomi J, et al. 2001. Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP [J]. J. Meteor. Soc. Japan, 79(1B): 463−474. doi: 10.2151/jmsj.79.463
    [22] Wang C C, Chen G T J, Carbone R E. 2004. A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations [J]. Mon. Wea. Rev., 132(7): 1606−1629. doi: 10.1175/1520-0493(2004)132<1606:acowcp>2.0.co;2
    [23] Webster P J, Magana V O, Palmer T N, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction [J]. J. Geophys. Res., 103(C7): 14451−14510. doi: 10.1029/97JC02719
    [24] 魏丽, 钟强. 1997. 青藏高原云的气候学特征 [J]. 高原气象, 16(1): 10−15. doi: 10.3321/j.issn:1000-0534.1997.01.002

    Wei L, Zhong Q. 1997. Characteristics of cloud climatology over Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 16(1): 10−15. doi: 10.3321/j.issn:1000-0534.1997.01.002
    [25] 肖艳姣, 刘黎平. 2006. 新一代天气雷达网资料的三维格点化及拼图方法研究 [J]. 气象学报, 64(5): 647−657. doi: 10.3321/j.issn:0577-6619.2006.05.011

    Xiao Y J, Liu L P. 2006. Study of methods for interpolating data from weather radar network to 3-D grid and mosaics [J]. Acta Meteor. Sinica (in Chinese), 64(5): 647−657. doi: 10.3321/j.issn:0577-6619.2006.05.011
    [26] Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon [J]. J. Meteor. Soc. Japan, 70(1B): 319−351. doi: 10.2151/jmsj1965.70.1B_319
    [27] Yu R C, Wang B, Zhou T J. 2004. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau [J]. J. Climate, 17(13): 2702−2713. doi: 10.1175/1520-0442(2004)017<2702:ceotdc>2.0.co;2
    [28] Yu R C, Zhou T J, Xiong A Y, et al. 2007. Diurnal variations of summer precipitation over contiguous China [J]. Geophys. Res. Lett., 34(1): L01704. doi: 10.1029/2006GL028129
    [29] 俞小鼎, 姚秀萍, 熊廷南, 等. 2007. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 185

    Yu X D, Yao X P, Xiong T N, et al. 2007. Principle and Application of Doppler Weather Radar (in Chinese) [M]. Beijing: China Meteorological Press, 185.
    [30] Yu L, Fu Y F, Yang Y J, et al. 2020. Trumpet-shaped topography modulation of the frequency, vertical structures, and water path of cloud systems in the summertime over the southeastern Tibetan Plateau: A perspective of daytime–nighttime differences [J]. J. Geophys. Res., 125(3): e2019JD031803. doi: 10.1029/2019JD031803
    [31] 张蔚然, 吴翀, 刘黎平, 等. 2021. 双偏振相控阵雷达与业务雷达的定量对比及观测精度研究 [J]. 高原气象, 40(2): 424−435. doi: 10.7522/j.issn.1000-0534.2020.00056

    Zhang W R, Wu C, Liu L P, et al. 2021. Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar [J]. Plateau Meteorology (in Chinese), 40(2): 424−435. doi: 10.7522/j.issn.1000-0534.2020.00056
    [32] Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations [J]. J. Climate, 21(16): 3997−4010. doi: 10.1175/2008JCLI2028.1
    [33] Zhou J, Wen J, Wang X, et al. 2017. Analysis of the Qinghai–Xizang Plateau monsoon evolution and its linkages with soil moisture [J]. Remote Sens., 8(6): 493. doi: 10.3390/rs8060493
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  103
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2021-11-15
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回