A Tracing Study on Influence Factors of East Asian Stable Isotopes in Atmospheric Water Vapor
-
摘要: 大气水汽稳定同位素是现代水循环的重要示踪剂,可以有效地追踪水汽来源及其输送过程。在中低纬度季风区,局地“降水量效应”是大气水汽稳定同位素的主要特征,但是近期研究表明,水汽来源及其输送过程等非局地因素也有重要影响。因此,本文基于拉格朗日粒子扩散模式和卫星遥感观测的大气水汽稳定氘同位素数据(数值表示为千分差,δD),针对前人研究较少的中国东部石笋氧同位素区域,进行水汽源地追踪,并在季节和年际尺度上分析水汽δD的主要影响因素。结果表明,在季节尺度上,水汽δD在夏末秋初较低,冬春季较高,这种特征与局地气象因子、水汽源地贡献的关系较弱,水汽输送路径上的累积降水是影响水汽δD季节变化的主要因素,两者为显著的负相关关系。在年际尺度上,厄尔尼诺(El Niño)年夏季中国东部水汽δD较高,拉尼娜(La Niña)年夏季水汽δD较低。水汽源地贡献在ENSO(厄尔尼诺—南方涛动)不同位相的变化较小,而水汽输送路径上的累积降水在La Niña年较之El Niño年偏多,表明La Niña年热带对流活动和水汽输送过程的贫化作用更强,导致目标区域的水汽δD更低。因此,代表热带对流活动的累积降水是水汽δD季节和年际变化的主要影响因素,热带对流活动增强(减弱)将降低(增加)目标区域的水汽δD。Abstract: Stable isotopes in atmospheric water vapor, which can track moisture sources and water vapor transport, are extensively used as a crucial tracer of the present-day water cycle. To interpret water vapor stable isotopes in the mid-low latitude monsoon region, the “amount effect” is invoked. However, recent studies have demonstrated that nonlocal factors, such as moisture sources and water vapor transport, have a significant effect on stable isotopes. Thus, the Lagrangian Particle Dispersion Model and Satellite remote sensing deuterium isotope data (expressed by parts per thousand of their deviation, δD) in water vapor are used to investigate the primary factors affecting water vapor δD in the region with abundant Chinese stalagmite δ18O records. On the seasonal scale, water vapor δD is more depleted in late summer and early autumn and enriched in winter and spring. This characteristic is difficult to interpret in terms of “temperature effect” or “amount effect.” However, accumulated rainfall over water vapor transport paths is the dominant factor of water vapor δD, and there is a significant negative correlation between them. On an interannual scale, water vapor δD is enhanced in the summer of the El Niño year and depleted in the summer of La Niña year. The contribution of moisture sources to water vapor δD is small; however, the accumulated rainfall over water vapor transport paths increased substantially in the La Niña year compared with the El Niño year. This shows that in the La Niña year, tropical convection and depletion in water vapor transport paths are significant, resulting in depleted water vapor δD in the study area. Finally, on a seasonal to interannual scale, upstream convection, as measured by accumulated rainfall, is the primary driver of water vapor δD variations. In the study area, enhanced convection will deplete δD, whereas the weakened convection will enrich δD.
-
图 1 (a)1953~2015年的全球大气降水同位素检测网(GNIP)GNIP站点降水氘同位素数据(数值表示为千分差,δD)和(b)2004~2011年卫星对流层放射光谱仪(TES)观测水汽δD年平均空间分布
Figure 1. Spatial pattern of annual mean (a) deuterium isotope data (expressed by parts per thousand of their deviation, δD) in precipitation for GNIP (Globe Network of Isotopes Precipitation) stations for the period of 1953−2015 and (b) δD in water vapor for TES (Tropospheric Emission Spectrometer) observation for the period of 2004−2011
图 2 (a)2004~2011年的中国TES水汽δD年平均空间分布(黑色三角表示我国石笋位置);(b)2004~2011年的夏季整层积分(1000~300 hPa)的水汽通量散度(填色,单位:10−5 kg m−2 s−1)和水汽通量(箭头,单位:300 kg m−1 s−1)分布。黑色方框为研究区域(24°N~34°N,102°E~120°E)
Figure 2. (a) Spatial pattern of annual mean δD in water vapor for TES observations in China for the period of 2004−2011. The triangles indicate Chinese stalagmite δ18O records. (b) Vertically integrated moisture flux divergence (shaded, units: 10−5 kg m−2 s−1) and moisture flux (vectors, units: 300 kg m−1 s−1) distributions from 1000 hPa to 300 hPa in summer for the period of 2004−2011. The black boxes indicate the study area (24°N–34°N, 102°E–120°E)
图 3 2004~2011年,研究区域各月聚类平均的空气块的轨迹(聚类数:200)。填色是空气块的比湿(单位:g kg−1),星号为空气块的起始位置
Figure 3. Monthly cluster mean trajectories (number: 200) of air particles reaching the study area for the period of 2004−2011. Specific humidity (units: g kg−1) of air particles is indicated by colors. The asterisks are the initial positions of air particles
图 5 (a)2004~2011年,研究区域TES水汽δD(黑色实线)、温度(红色虚线,单位:°C)、降水量(蓝色虚线,单位:mm d−1)和上游区域(10°N~20°N,60°E~180°)OLR(棕色虚线,单位:W m−2)的季节变化;(b)水汽源地划分:局地、欧亚大陆、孟加拉湾、南海、西太平洋、阿拉伯海、北印度洋、非洲和北大西洋
Figure 5. (a) Seasonal patterns in long-term averaged monthly δD (black solid line) in water vapor for TES observation, temperature (red dotted line, units: °C), precipitation (blue dotted line, units: mm d−1) in the study area, and OLR (brown dotted line, units: W m−2) in the upstream region (10°N–20°N,60°E–180°E). (b) Moisture sources, include Local, Eurasia, Bay of Bengal, South China Sea, West Pacific Ocean, Arabian Sea, North Indian Ocean, Africa, and North Atlantic
图 6 2004~2011年,(a)水汽源地贡献和(b)水汽输送路径上的累积降水量(单位:1016 kg)的季节变化。Local、EA、BOB、SCS、WP、AS、NIO、AF、NAO和Other分别表示目标区域、东亚、孟加拉湾、南海、西太平洋、阿拉伯海、北印度洋、非洲、北大西洋和其他区域
Figure 6. Seasonal patterns of (a) contribution of moisture sources and accumulated rainfall (units: 1016 kg) over water vapor transport paths. Local, EA, BOB, SCS, WP, AS, NIO, AF. NAO and Other represent study area, East Asia, Bay of Bengal, South China Sea, Western Pacific, Arabian Sea, Northern India Ocean, Africa, North Atlantic Ocean and other areas
图 7 (a、c)El Niño年和(b、d)La Niña年夏季(6月到9月,简称JJAS)(a、b)水汽δD异常(填色)叠加整层积分水汽通量异常(箭头,单位:300 kg m−1 s−1)和(c、d)降水量异常(填色,单位:mm d−1)叠加850 hPa风场异常(箭头,单位:m s−1)分布
Figure 7. (a, b) Distributions of δD anomalies (shaded) and vertically integrated moisture flux anomalies (vectors, units: 300 kg m−1 s−1), (c, d) distributions of precipitation anomalies (shaded, units: mm d−1) and 850 hPa wind anomalies (vectors, units: m s−1) in JJAS (June–July–August–September) of (a, c) El Niño year and (b, d) La Niña year
图 8 El Niño年和La Niña年(a)水汽源地贡献和(b)水汽源地累积降水量(单位:1016 kg);(c)El Niño年和(d)La Niña年JJAS向外长波辐射异常(单位:W m−2)分布
Figure 8. (a) Contribution of moisture sources and (b) accumulated rainfall over water vapor transport paths (units: 1016 kg) in El Niño year and La Niña year). JJAS OLR (Outgoing Longwave Radiation) anomalies (units: W m−2) in (c) El Niño year and (d) La Niña year
表 1 研究区域水汽
$\delta {\rm{D}} $ 、水汽源地贡献和过程累积降水逐月异常数据的相关系数,加粗为通过95%信度的显著性检验Table 1. Correlation coefficients between monthly
$\delta {\rm{D}} $ anomalies in water vapor, contribution of moisture source anomalies, and accumulated rainfall anomalies. Boldface values indicate correlation coefficients exceeding the 0.05 significance level水汽δD、水汽源地贡献和累积降水逐月异常数据的
相关系数Local EA BOB SCS WP AS 水汽源地贡献 0.12 0.04 0.58 0.02 −0.35 0.05 过程累积降水 −0.53 −0.25 −0.36 -0.55 −0.48 0.13 -
[1] Adler R F, Sapiano M R P, Huffman G J, et al. 2018. The global precipitation climatology project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation [J]. Atmosphere, 9(4): 138. doi: 10.3390/atmos9040138 [2] Araguás-Araguás L, Froehlich K, Rozanski K. 1998. Stable isotope composition of precipitation over southeast Asia [J]. J. Geophys. Res.: Atmos., 103(D22): 28721−28742. doi: 10.1029/98JD02582 [3] Araguás-Araguás L, Froehlich K, Rozanski K. 2000. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture [J]. Hydrological Processes, 14(8): 1341−1355. doi: 10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z [4] Baker A J, Sodemann H, Baldini J U L, et al. 2015. Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O [J]. J. Geophys. Res. :Atmos., 120(12): 5850−5862. doi: 10.1002/2014JD022919 [5] Cai Zhongyin, Tian Lide. 2016a. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region [J]. J. Climate, 29(4): 1339−1352. doi: 10.1175/JCLI-D-15-0363.1 [6] Cai Zhongyin, Tian Lide. 2016b. Processes governing water vapor isotope composition in the Indo–Pacific region: Convection and water vapor transport [J]. J. Climate, 29(23): 8535−8546. doi: 10.1175/JCLI-D-16-0297.1 [7] Cai Zhongyin, Tian Lide, Bowen G J. 2017. ENSO variability reflected in precipitation oxygen isotopes across the Asian summer monsoon region [J]. Earth and Planetary Science Letters, 475: 25−33. doi: 10.1016/j.jpgl.2017.06.035 [8] Cai Zhongyin, Tian Lide, Bowen G J. 2018. Spatial-seasonal patterns reveal large-scale atmospheric controls on Asian monsoon precipitation water isotope ratios [J]. Earth and Planetary Science Letters, 503: 158−169. doi: 10.1016/j.jpgl.2018.09.028 [9] 程海, 艾思本, 王先锋, 等. 2005. 中国南方石笋氧同位素记录的重要意义 [J]. 第四纪研究, 25(2): 157−163. doi: 10.3321/j.issn:1001-7410.2005.02.004Cheng Hai, Ai Siben, Wang Xianfeng, et al. 2005. Oxygen isotope records of stalagmites from southern China [J]. Quaternary Sciences (in Chinese), 25(2): 157−163. doi: 10.3321/j.issn:1001-7410.2005.02.004 [10] Cheng Hai, Zhang Haiwei, Cai Yanjun, et al. 2021. Orbital-scale Asian summer monsoon variations: Paradox and exploration [J]. Science China Earth Sciences, 64(4): 529−544. doi: 10.1007/s11430-020-9720-y [11] Cosford J, Qing Hairuo, Eglington B, et al. 2008. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China [J]. Earth and Planetary Science Letters, 275(3–4): 296–307. doi:10.1016/j.jpgl.2008.08.018 [12] Dansgaard W. 1964. Stable isotopes in precipitation [J]. Tellus, 16(4): 436−468. doi: 10.1111/j.2153-3490.1964.tb00181.x [13] Field R D, Jones D B A, Brown D P. 2010. Effects of postcondensation exchange on the isotopic composition of water in the atmosphere [J]. J. Geophys. Res.: Atmos., 115(D24): D24305. doi: 10.1029/2010JD014334 [14] Fleitmann D, Burns S J, Neff U, et al. 2004. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman [J]. Quaternary Science Reviews, 23(7–8): 935–945. doi:10.1016/j.quascirev.2003.06.019 [15] Galewsky J, Steen-Larsen H C, Field R D, et al. 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle [J]. Rev. Geophys., 54(4): 809−865. doi: 10.1002/2015RG000512 [16] Gao Jing, Masson-Delmotte V, Risi C, et al. 2013. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam [J]. Tellus B:Chemical and Physical Meteorology, 65(1): 21043. doi: 10.3402/tellusb.v65i0.21043 [17] Gao Jing, He You, Masson-Delmotte V, et al. 2018. ENSO effects on annual variations of summer precipitation stable isotopes in Lhasa, southern Tibetan Plateau [J]. J. Climate, 31(3): 1173−1182. doi: 10.1175/JCLI-D-16-0868.1 [18] Graf P, Wernli H, Pfahl S, et al. 2019. A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain [J]. Atmos. Chem. Phys., 19(2): 747−765. doi: 10.5194/acp-19-747-2019 [19] He You, Risi C, Gao Jing, et al. 2015. Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling [J]. J. Geophys. Res. :Atmos., 120(9): 3852−3871. doi: 10.1002/2014JD022180 [20] Hu Chaoyong, Henderson G M, Huang Junhua, et al. 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records [J]. Earth and Planetary Science Letters, 266(3–4): 221–232. doi:10.1016/j.jpgl.2007.10.015 [21] Hu Jun, Emile-Geay J, Tabor C, et al. 2019. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model [J]. Paleoceanography and Paleoclimatology, 34(12): 2098−2112. doi: 10.1029/2019PA003741 [22] IAEA/WMO. 2021. Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water [23] Jiang Zhihong, Jiang Shuai, Shi Yi, et al. 2017. Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010 [J]. J. Geophys. Res.: Atmos., 122(2): 600−613. doi: 10.1002/2016JD025795 [24] Kaspari S, Mayewski P, Kang S, et al. 2007. Reduction in northward incursions of the South Asian monsoon since ~1400 AD inferred from a Mt. Everest ice core [J]. Geophys. Res. Lett., 34(16): L16701. doi: 10.1029/2007GL030440 [25] Lee J E, Fung I. 2008. “Amount effect” of water isotopes and quantitative analysis of post-condensation processes [J]. Hydrological Processes, 22(1): 1−8. doi: 10.1002/hyp.6637 [26] Li Dong, Tan Liangcheng, Cai Yanjun, et al. 2019. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon? [J]. Climate Dyn., 53(5): 2969−2983. doi: 10.1007/s00382-019-04671-x [27] Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset [J]. Bull. Amer. Meteor. Soc., 77(6): 1275−1277. [28] Liu Zhengyu, Wen Xinyu, Brady E C, et al. 2014a. Chinese cave records and the East Asia Summer Monsoon [J]. Quaternary Science Reviews, 83: 115−128. doi: 10.1016/j.quascirev.2013.10.021 [29] Liu Zhongfang, Yoshimura K, Kennedy C D, et al. 2014b. Water vapor δD dynamics over China derived from SCIAMACHY satellite measurements [J]. Science China Earth Sciences, 57(4): 813−823. doi: 10.1007/s11430-013-4687-1 [30] Oza H, Ganguly A, Padhya V, et al. 2020. Hydrometeorological processes and evaporation from falling rain in Indian sub-continent: Insights from stable isotopes and meteorological parameters [J]. J. Hydrol., 591: 125601. doi: 10.1016/j.jhydrol.2020.125601 [31] Pausata F S R, Battisti D S, Nisancioglu K H, et al. 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event [J]. Nature Geoscience, 4(7): 474−480. doi: 10.1038/ngeo1169 [32] Peng Dongdong, Zhou Tianjun, Zhang Lixia. 2020. Moisture sources associated with precipitation during dry and wet seasons over Central Asia [J]. J. Climate, 33(24): 10755−10771. doi: 10.1175/JCLI-D-20-0029.1 [33] Risi C, Bony S, Vimeux F, et al. 2008. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect [J]. J. Geophys. Res.: Atmos., 113(D19): D19306. doi: 10.1029/2008JD009943 [34] Risi C, Bony S, Vimeux F, et al. 2010. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation [J]. J. Geophys. Res.: Atmos., 115(D24): D24110. doi: 10.1029/2010JD014690 [35] Risi C, Noone D, Frankenberg C, et al. 2013. Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements [J]. Water Resour. Res., 49(7): 4136−4156. doi: 10.1002/wrcr.20312 [36] Ruan Jiaoyang, Zhang Hongyu, Cai Zhongyin, et al. 2019. Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction [J]. Earth and Planetary Science Letters, 527: 115794. doi: 10.1016/j.jpgl.2019.115794 [37] Shi Yi, Jiang Zhihong, Liu Zhengyu, et al. 2020. A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in Different stages of the East Asian summer monsoon [J]. J. Climate, 33(3): 977−992. doi: 10.1175/JCLI-D-19-0089.1 [38] Sodemann H, Schwierz C, Wernli H. 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence [J]. J. Geophys. Res. :Atmos., 113(D3): D03107. doi: 10.1029/2007JD008503 [39] Stohl A, James P. 2004. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe [J]. J. Hydrometeorol., 5(4): 656−678. doi: 10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2 [40] Stohl A, James P. 2005. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between earth’s ocean basins and river catchments [J]. J. Hydrometeorol., 6(6): 961−984. doi: 10.1175/JHM470.1 [41] Sun Bo, Wang Huijun. 2014. Moisture sources of semiarid grassland in China using the Lagrangian particle Model FLEXPART [J]. J. Climate, 27(6): 2457−2474. doi: 10.1175/JCLI-D-13-00517.1 [42] Sun Bo, Wang Huijun. 2015. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China [J]. Int. J. Climatol., 35(9): 2243−2257. doi: 10.1002/joc.4145 [43] Sun Zhe, Yang Yan, Zhao Jingyao, et al. 2018. Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China [J]. J. Hydrol., 566: 164−174. doi: 10.1016/j.jhydrol.2018.09.015 [44] Tabor C R, Otto-Bliesner B. L, Brady E C, et al 2018. Interpreting precession-driven δ18O variability in the South Asian monsoon region [J]. J. Geophys. Res.: Atmos., 123(11): 5927−5946. doi: 10.1029/2018JD028424 [45] Tan Ming. 2014. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China [J]. Climate Dyn., 42(3): 1067−1077. doi: 10.1007/s00382-013-1732-x [46] Tang Y, Pang H, Zhang W, et al. 2015. Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation – a case study in Nanjing, eastern China [J]. Hydrol. Earth Syst. Sci., 19(10): 4293−4306. doi: 10.5194/hess-19-4293-2015 [47] Tang Yu, Song Xianfang, Zhang Yinghua, et al. 2017. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation [J]. Hydrological Processes, 31(26): 4682−4692. doi: 10.1002/hyp.11388 [48] Thompson L G, Yao T, Mosley-Thompson E, et al. 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores [J]. Science, 289(5486): 1916−1919. doi: 10.1126/science.289.5486.1916 [49] Thompson L G, Yao Tandong, Davis M E, et al. 2018. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains [J]. Quaternary Science Reviews, 188: 1−14. doi: 10.1016/j.quascirev.2018.03.003 [50] Vuille M, Werner M, Bradley R S, et al. 2005. Stable isotopes in precipitation in the Asian monsoon region [J]. J. Geophys. Res.: Atmos., 110(D23): D23108. doi: 10.1029/2005JD006022 [51] 王宁练, 姚檀栋. 2003. 冰芯对于过去全球变化研究的贡献 [J]. 冰川冻土, 25(3): 275−287. doi: 10.3969/j.issn.1000-0240.2003.03.007Wang Ninglian, Yao Tandong. 2003. Contributions of ice core to the past global change research [J]. Journal of Glaciology and Geocryology (in Chinese), 25(3): 275−287. doi: 10.3969/j.issn.1000-0240.2003.03.007 [52] 王林, 冯娟. 2011. 我国冬季降水年际变化的主模态分析 [J]. 大气科学, 35(6): 1105−1116. doi: 10.3878/j.issn.1006-9895.2011.06.10Wang Lin, Feng Juan. 2011. Two major modes of the wintertime precipitation over China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(6): 1105−1116. doi: 10.3878/j.issn.1006-9895.2011.06.10 [53] Wang Y J, Cheng H, Edwards R L, et al. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294(5550): 2345−2348. doi: 10.1126/science.1064618 [54] Wang Ninglian, Yao Tandong, Pu Jianchen, et al. 2003. Variations in air temperature during the last 100 years revealed by δ18O in the Malan ice core from the Tibetan Plateau [J]. Chinese Science Bulletin, 48(19): 2134−2138. doi: 10.1360/02wd0539 [55] Wang Yongjin, Cheng Hai, Edwards R L, et al. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate [J]. Science, 308(5723): 854−857. doi: 10.1126/science.1106296 [56] 王权, 赵侃, 杨少华, 等. 2020. 湖北永兴洞降水对2015年厄尔尼诺的响应 [J]. 第四纪研究, 40(4): 985−991. doi: 10.11928/j.issn.1001-7410.2020.04.13Wang Quan, Zhao Kan, Yang Shaohua, et al. 2020. The response of precipitation δ18O in Yongxing cave, Hubei province to enso, 2015 [J]. Quaternary Sciences (in Chinese), 40(4): 985−991. doi: 10.11928/j.issn.1001-7410.2020.04.13 [57] Wang Yingzhao, Hu Chaoyong, Ruan Jiaoyang, et al. 2020. East asian precipitationδ18O relationship with various monsoon indices [J]. J. Geophys. Res. :Atmos., 125(13): e2019JD032282. doi: 10.1029/2019JD032282 [58] Wei Zhongwang, Lee X, Liu Zhongfang, et al. 2018. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia [J]. Earth and Planetary Science Letters, 488: 181−192. doi: 10.1016/j.jpgl.2018.02.015 [59] Wolf A, Roberts W H G, Ersek V, et al. 2020. Rainwater isotopes in central Vietnam controlled by two oceanic moisture sources and rainout effects [J]. Scientific Reports, 10(1): 16482. doi: 10.1038/s41598-020-73508-z [60] Worden J, Bowman K, Noone D, et al. 2006. Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization [J]. J. Geophys. Res.: Atmos., 111(D16): D16309. doi: 10.1029/2005JD006606 [61] Worden J, Noone D, Bowman K, et al. 2007. Importance of rain evaporation and continental convection in the tropical water cycle [J]. Nature, 445(7127): 528−532. doi: 10.1038/nature05508 [62] Worden J, Noone D, Galewsky J, et al. 2011. Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory [J]. Atmos. Chem. Phys., 11(9): 4491−4503. doi: 10.5194/acp-11-4491-2011 [63] Wu Huawu, Li Xiaoyan, Zhang Jianming, et al. 2019. Stable isotopes of atmospheric water vapour and precipitation in the northeast Qinghai–Tibetan Plateau [J]. Hydrological Processes, 33(23): 2997−3009. doi: 10.1002/hyp.13541 [64] Yang H, Johnson K R, Griffiths M L, et al. 2016. Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions [J]. J. Geophys. Res.: Atmos., 121(14): 8410−8428. doi: 10.1002/2015JD024683 [65] Yang Yu, Yang Ruowen, Cao Jie, et al. 2019. Relationship between the Asian summer monsoon circulation and speleothem δ18O of Xiaobailong cave [J]. Climate Dyn., 53(9): 6351−6362. doi: 10.1007/s00382-019-04935-6 [66] Yao Tandong, Guo Xuejun, Thompson L, et al. 2006. δ18O record and temperature change over the past 100 years in ice cores on the Tibetan Plateau [J]. Science in China Series D, 49(1): 1−9. doi: 10.1007/s11430-004-5096-2 [67] Yao Tandong, Masson-Delmotte V, Gao Jing, et al. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations [J]. Rev. Geophys., 51(4): 525−548. doi: 10.1002/rog.20023 [68] Yoshimura K. 2015. Stable water isotopes in climatology, meteorology, and hydrology: A review [J]. J. Meteor. Soc. Japan, 93(5): 513−533. doi: 10.2151/jmsj.2015-036 [69] Yuan Daoxian, Cheng Hai, Edwards R L, et al. 2004. Timing, duration, and transitions of the Last Interglacial Asian Monsoon [J]. Science, 304(5670): 575−578. doi: 10.1126/science.1091220 [70] 张洁, 周天军, 宇如聪, 等. 2009. 中国春季典型降水异常及相联系的大气水汽输送 [J]. 大气科学, 33(1): 121−134. doi: 10.3878/j.issn.1006-9895.2009.01.11Zhang Jie, Zhou Tianjun, Yu Rucong, et al. 2009. Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 121−134. doi: 10.3878/j.issn.1006-9895.2009.01.11 [71] 张婉君, 章新平, 姚天次, 等. 2017. 降水稳定同位素的iAWBM模拟及其与GNIP实测值的比较 [J]. 环境科学学报, 37(2): 538−544. doi: 10.13671/j.hjkxxb.2016.0221Zhang Wanjun, Zhang Xinping, Yao Tianci, et al. 2017. Comparison of stable isotopes in precipitation simulated by iAWBM with GNIP observations [J]. Acta Scientiae Circumstantiae (in Chinese), 37(2): 538−544. doi: 10.13671/j.hjkxxb.2016.0221 [72] Zhang Haiwei, Brahim Y A, Li Hanying, et al. 2019. The Asian summer monsoon: Teleconnections and forcing mechanisms—A review from Chinese speleothem δ18O records [J]. Quaternary, 2(3): 26. doi: 10.3390/quat2030026 [73] Zhang Haiwei, Cheng Hai, Cai Yanjun, et al. 2020. Effect of precipitation seasonality on annual oxygen isotopic composition in the area of spring persistent rain in southeastern China and its paleoclimatic implication [J]. Climate Past, 16(1): 211−225. doi: 10.5194/cp-16-211-2020 [74] Zhang Haiwei, Zhang Xu, Cai Yanjun, et al. 2021. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon [J]. Quaternary Science Reviews, 261: 106911. doi: 10.1016/j.quascirev.2021.106911 -