高级检索

FY-4A AGRI资料在对流尺度数值预报云初始化中的作用及对降水预报的影响分析

The Effect of FY-4A AGRI Data in Cloud Initialization for Convective Scale Numerical Prediction and Its Influence on Precipitation Prediction

  • 摘要: 针对2020年7月1~8日梅雨期暴雨过程,利用LAPS(Local Analysis and Prediction System)云分析系统融合三维雷达反射率因子和FY-4A AGRI资料的可见光、水汽、红外通道辐射数据,获取云的三维分布,并将云场内的水凝物引入初始场热启动中尺度预报模式,通过比较融合卫星资料前后两种方案云分析产品和降水预报的异同,重点分析融合FY-4A AGRI资料对分析场和预报场的影响。通过两种方案云产品与MODIS反演云产品的对比可发现,融合FY-4A AGRI资料能明显修正分析场的云顶高度,改善云量的水平分布,减少虚假云区。通过两种方案分析的水凝物与ERA5逐时水凝物的对比发现,融合卫星资料能在一定程度上降低云冰和云水混合比的峰值,有效剔除水凝物的虚假中心。通过两种方案预报降水与实况降水的对比发现,24 h累计降水的ETS和偏差评分均表明融合卫星资料对24 h降水预报有改进作用;逐时预报降水的FSS评分表明融合FY-4A AGRI资料能明显改善模式积分1 h的降水预报。

     

    Abstract: Incorporating cloud condensation information into the initial field of mesoscale weather predicting models is crucial yet challenging. In this study, we utilized the local analysis and prediction system (LAPS) to integrate data from the FY-4A advanced geostationary radiation imager (AGRI) satellite, specifically its visible light, water vapor, and infrared channels, alongside 3D radar reflectivity. This approach allowed us to obtain detailed mapping of cloud distributions on macro and micro scales. Hydrometeors within cloud distributions can be further ingested into the initial field to trigger a mesoscale model warm start. In this study, we employed the LAPS to ingest data focusing on a Mei-yu event from July 1 to 8, 2020. This paper compared cloud analysis products and precipitation predictions both with and without the inclusion of FY-4A AGRI satellite-ingested data. When compared with the MODIS cloud product, our results showed that incorporating FY-4A AGRI data enhances the accuracy of cloud top height and cloud horizontal distribution. The initial field enriched with FY-4A AGRI data aids in eliminating inaccuracies, specifically the false centers of hydrometers. Further comparison with ERA5 hourly hydrometeor revealed that utilizing FY-4A AGRI LAPS data diminishes the peaks of cloud ice and cloud water mixing ratios and eradicates the false centers of hydrometeors. Forecasts made with LAPS ingested initial field outperformed others in the 24-hour cumulative precipitation equitable threat scores and bias scores. The fractions skill score (FSS) of hourly precipitation prediction with LAPS ingested initial field can also be improved in the first hour.

     

/

返回文章
返回