高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球海洋模式对不同强迫场的响应

虎雅琼 刘海文 李阳春 徐永福

虎雅琼, 刘海文, 李阳春, 徐永福. 全球海洋模式对不同强迫场的响应[J]. 大气科学, 2015, 39(1): 180-196. doi: 10.3878/j.issn.1006-9895.1405.13292
引用本文: 虎雅琼, 刘海文, 李阳春, 徐永福. 全球海洋模式对不同强迫场的响应[J]. 大气科学, 2015, 39(1): 180-196. doi: 10.3878/j.issn.1006-9895.1405.13292
HU Yaqiong, LIU Haiwen, LI Yangchun, XU Yongfu. Responses of a Global Ocean Model to Different Forcing Fields[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 180-196. doi: 10.3878/j.issn.1006-9895.1405.13292
Citation: HU Yaqiong, LIU Haiwen, LI Yangchun, XU Yongfu. Responses of a Global Ocean Model to Different Forcing Fields[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 180-196. doi: 10.3878/j.issn.1006-9895.1405.13292

全球海洋模式对不同强迫场的响应

doi: 10.3878/j.issn.1006-9895.1405.13292
基金项目: 国家重点基础研究发展计划(973计划)项目2010CB951802,国家自然科学基金资助项目 41105087、41075091

Responses of a Global Ocean Model to Different Forcing Fields

  • 摘要: 使用中国科学院大气物理研究所研制的全球海洋环流模式(LASG/IAP Climate system Ocean Model,LICOM),通过设计三个试验,即以德国马克斯—普朗克气象研究所整理的海洋模式比较计划(OMIP)资料和美国国家海洋资料中心(NODC)发布的《世界海洋图集2009》(WOA09)资料为强迫场的试验W,用美国环境预报中心(NCEP)和国家大气研究中心(NCAR)联合推出的NCEP/NCAR再分析资料(简称NCEP资料)中的风应力资料代替试验W中的风应力资料的试验M,以及用NCEP资料中的热力强迫代替试验M中的热力强迫资料的试验N,来研究不同的热力和动力强迫场对模式的影响。三个试验的模拟结果均模拟出了水团和流场的分布型和极值区。从三个试验的结果对比可以看出,NCEP资料较弱的风应力使得试验M环流场明显偏弱,减弱了大洋内部的温盐输送,加大了深海温盐模拟结果与观测资料的偏差,但对原模式过强的南极中层水的输送有所改善。NCEP的短波辐射通量和非短波热通量弱于OMIP,且在两极区域NCEP资料的海表温度比WOA09资料最多低 4℃以上。试验N的模拟结果改善了南大洋60°S以南海区试验W 模拟的海表温度偏高问题,减小了北冰洋部分海域以及副热带大洋东部海表温度的偏差。此外,试验N高纬度较低的海表温度增强了北大西洋深水以及南极底层水的输送,因而改善了深海的温盐模拟结果。三个试验在一些关键海区得到的经向热输送在观测估计及前人模拟结果的范围中,总体上试验M的输送最弱。综合三个试验的模拟结果,可以认为OMIP风应力资料和NCEP海表温度资料更适合作为LICOM模式的强迫场。
  • [1] Bryden H L, Roemmich D H, Church J A. 1991. Ocean heat transport across 24°N in the Pacific [J]. Deep Sea Research Part A. Oceanographic Research Papers, 38 (3): 297-324.
    [2] Carton J A, Chepurin G, Cao X H, et al. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: Methodology [J]. Journal of Physical Oceanography, 30 (2): 294-309.
    [3] Chai F, Liu G M, Xue H J, et al. 2009. Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physical- biogeochemical modeling study [J]. Journal of Oceanography, 65 (5): 703-720.
    [4] Chaudhuri A H, Ponte R M, Forget G, et al. 2013. A comparison of atmospheric reanalysis surface products over the ocean and implications for uncertainties in air-sea boundary forcing [J]. J. Climate, 26 (1): 153- 170.
    [5] 陈光泽, 张铭, 李崇银. 2011. 表层洋流对外强迫响应敏感度的数值研究 [J]. 大气科学学报, 34 (2): 199-208. Chen Guangze, Zhang Ming, Li Chongyin. 2011. Simulation studies on the response sensitivity of sea surface flow to external forcing [J]. Trans. Atmos. Sci. (in Chinese), 34 (2): 199-208.
    [6] 储敏, 徐永福, 李阳春. 2012. 全球海洋环流模式对自然14C 的模拟 [J]. 海洋学报, 34 (6): 217-227. Chu Min, Xu Yongfu, Li Yangchun. 2012. Simulation of natural 14C in a global ocean general circulation model [J]. Acta Oceanologica Sinica (in Chinese), 34 (6): 217-227.
    [7] Cunningham S A, Alderson S G, King B A, et al. 2003. Transport and variability of the Antarctic circumpolar current in drake passage [J]. J. Geophys. Res. 108 (C5), doi: 10.1029/2001JC001147.
    [8] Doney S C, Lindsay K, Caldeira K, et al. 2004. Evaluating global ocean carbon models: The importance of realistic physics [J]. Global Biogeochemical Cycles, 18 (3), doi: 10.1029/2003GB002150.
    [9] Dutay J C, Bullister J L, Doney S C, et al. 2002. Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models [J]. Ocean Modelling, 4 (2): 89-120.
    [10] England M H. 1993. Representing the global-scale water masses in ocean general circulation models [J]. J. Phys. Oceanogr., 23 (7): 1523-1552.
    [11] Ganachaud A. 2000. Large scale oceanic circulation and fluxes of freshwater, heat, nutrients, and oxygen [D]. Ph. D. thesis, Massachussetts Institute of Technology/Woods Hole Oceanographic Institution.
    [12] Gregg W, Casey N, Rousseaux C. 2012. Global surface ocean carbon estimates in a model forced by Merra [R]. NASA Technical Report Series on Global Modeling and Data Assimilation: 31.
    [13] 何晏春, 郜永祺, 王会军, 等. 2012. 2011 年 3 月日本福岛核电站核泄漏在 海洋中的传输 [J]. 海洋学报. 34 (4): 12-20. He Yanchun, Gao Yongqi, Wang Huijun, et al. 2012. Transport of nuclear leakage from Fukushima Nuclear Power Plant in the North Pacific [J]. Acta Oceanologica Sinica (in Chinese), 34(4): 12-20.
    [14] Holfort J, Siedler G. 2001. The meridional oceanic transports of heat and nutrients in the South Atlantic [J]. J. Phys. Oceanogr., 31 (1): 5-29.
    [15] Hunke E C, Holland M M. 2007. Global atmospheric forcing data for Arctic ice-ocean modeling [J]. Journal of Geophysical Research, 112: C04S14, doi: 10.1029/2006JC003640.
    [16] Josey S A, Kent E C, Taylor P K. 2002. Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP-NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets [J]. J. Phys. Oceanogr., 32 (7): 1993-2019.
    [17] Large W G, Yeager S G. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies [R]. National Center for Atmospheric Research Technical Note NCAR/TN-460+STR.
    [18] Li Yangchun, Xu Yongfu. 2012. Influences of two air-sea exchange schemes on the distribution and storage of bomb radiocarbon in the Pacific Ocean [J]. Marine Chemistry, 130: 40-48.
    [19] 刘海龙, 俞永强, 李薇, 等. 2004. LASG/IAP 气候系统海洋模式(LICOM1.0)参考手册 [M]. 北京: 科学出版社, 107pp. Liu Hailong, Yu Yongqiang, Li Wei, et al. 2004. LASG/IAP Climate System Ocean Model (LICOM 1.0): User Manual (in Chinese) [M]. Beijing: Science Press, 107pp.
    [20] Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012. The baseline evaluation of LASG/IAP climate system Ocean Model (LICOM) version 2 [J]. Acta Meteor. Sinica, 26 (3): 318-329.
    [21] Liu Hailong, Zhang Xuehong, Li Wei, et al. 2004. An eddy-permitting oceanic general circulation model and its preliminary evaluations [J]. Advances in Atmospheric Sciences, 21 (5): 675-690.
    [22] Lumpkin R, Speer K. 2007. Global ocean meridional overturning [J]. J. Phys. Oceanogr., 37 (10): 2550-2562.
    [23] 马浩, 王召民, 史久新. 2012. 南大洋物理过程在全球气候系统中的作用 [J]. 地球科学进展, 27 (4): 398-412. Ma Hao, Wang Zhaomin, Shi Jiuxin. 2012. The role of the southern ocean physical processes in global climate system [J]. Advances in Earth Science (in Chinese), 27(4): 398-412.
    [24] Macdonald A M. 1998. The global ocean circulation: A hydrographic estimate and regional analysis [J]. Progress in Oceanography, 41 (3): 281- 382.
    [25] McPhaden M J, Zhang D. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean [J]. Nature, 415 (6872): 603-608.
    [26] Oberhuber J. 1988. An Atlas Based on the “COADS” Data Set: The Budgets of Heat, Buoyancy and Turbulent Kinetic Energy at the Surface of the Global Ocean [M]. Hamburg: Max-Planck Institute.
    [27] Onogi K, Tsutsui J, Koide H, et al. 2007. The JRA-25 reanalysis [J]. J. Meteor. Soc. Japan, 85 (3): 369-432.
    [28] Röske F. 2001. An atlas of surface fluxes based on the ECMWF re-analysis— A climatological dataset to force global ocean general circulation models [R]. Report No. 323, Max-Planck-Institut für Meteorologie, Hamburg, pp. 1-31.
    [29] Rizal S, Damm P, Wahid M A, et al. 2012. GENERAL circulation in the Malacca strait and Andaman sea: A numerical model study [J]. American Journal of Environmental Sciences, 8 (5): 479-488.
    [30] Roemmich D, Gilson J, Cornuelle B, et al. 2001. Mean and time-varying meridional transport of heat at the tropical/subtropical boundary of the North Pacific Ocean [J]. J. Geophys. Res., 106 (C5): 8957-8970.
    [31] Talley L D, Reid J L, Robbins P E. 2003. Data-based meridional overturning streamfunctions for the global ocean [J]. J. Climate, 16 (19): 3213-3226.
    [32] Uchimoto K, Nakamura T, Nishioka J, et al. 2011. Simulations of chlorofluorocarbons in and around the Sea of Okhotsk: Effects of tidal mixing and brine rejection on the ventilation [J]. J. Geophys. Res., 116 (C2), doi: 10.1029/2010JC006487.
    [33] 王东晓, 刘雄斌, 王文质, 等. 2004. 理想海底地形的南海海洋经向翻转数值模拟 [J]. 科学通报, 49 (5): 480-486. Wang Dongxiao, Liu Xiongbin, Wang Wenzhi, et al. 2004. The numerical simulation of meridional overturning of the South China Sea with realistic topography [J]. Chinese Science Bulletin (in Chinese), 49(5): 480-486.
    [34] 王璐, 周天军, 刘海龙, 等. 2011. 两种热通量边界条件对热带太平洋海 温模拟的影响 [J]. 海洋学报, 33 (4): 9-18. Wang Lu, Zhou Tianjun, Liu Hailong, et al. 2011. Comparison of two thermal forcing schemes in a global ocean model over tropical Pacific Ocean [J]. Acta Oceanologica Sinica (in Chinese), 33(4): 9-18.
    [35] Xu Yongfu, Li Yangchun, Chu Min. 2013. A global ocean biogeochemistry general circulation model and its simulations [J]. Advances in Atmospheric Sciences, 30 (3): 922-939.
    [36] 杨阳, 周伟东, 董丹鹏. 2007. 大洋环流的诊断计算 [J]. 海洋通报, 26 (6): 3-8. Yang Yang, Zhou Weidong, Dong Danpeng. 2007. Diagnostic calculation of the oceanic circulation [J]. Marine Science Bulletin (in Chinese), 26(6): 3-8.
    [37] 俞永强, 李超, 王东晓, 等. 2011. 暖池季节变化的数值模拟及其对海表热力和动力强迫的敏感性 [J]. 热带海洋学报, 30 (1): 1-10. Yu Yongqiang, Li Chao, Wang Dongxiao, et al. 2011. Numerical simulation of seasonal cycle in the warm pool and its sensitivity to surface heat flux and momentum forcing [J]. Journal of Tropical Oceanography (in Chinese), 30(1): 1-10.
    [38] 张学洪, 俞永强, 周天军, 等. 2013. 大洋环流和海气相互作用的数值 模拟讲义 [M]. 北京: 气象出版社, 298pp. Zhang Xuehong, Yu Yongqiang, Zhou Tianjun, et al. 2013. Lecture Notes on Numerical Simulations of Ocean Circulation and Air-Sea Interaction (in Chinese) [M]. Beijing: China Meteorological Press, 298pp.
    [39] 赵琦, 陈中笑, 徐永福, 等. 2012. 全球海洋CFC-11吸收对传输速度 的敏感性 [J]. 大气科学, 36(6): 1253-1268. Zhao Qi, Chen Zhongxiao, Xu Yongfu, et al. 2012. Sensitivity of CFC-11 uptake in a global ocean model to air-sea gas transfer velocity [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (6): 1253-1268.
  • 加载中
计量
  • 文章访问数:  3115
  • HTML全文浏览量:  28
  • PDF下载量:  2666
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-22
  • 修回日期:  2014-05-26

目录

    /

    返回文章
    返回