高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP5模式对我国西南地区干湿季降水的模拟和预估

张武龙 张井勇 范广洲

张武龙, 张井勇, 范广洲. CMIP5模式对我国西南地区干湿季降水的模拟和预估[J]. 大气科学, 2015, 39(3): 559-570. doi: 10.3878/j.issn.1006-9895.1408.14136
引用本文: 张武龙, 张井勇, 范广洲. CMIP5模式对我国西南地区干湿季降水的模拟和预估[J]. 大气科学, 2015, 39(3): 559-570. doi: 10.3878/j.issn.1006-9895.1408.14136
ZHANG Wulong, ZHANG Jingyong, FAN Guangzhou. Evaluation and Projection of Dry- and Wet-Season Precipitation in Southwestern China Using CMIP5 Models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 559-570. doi: 10.3878/j.issn.1006-9895.1408.14136
Citation: ZHANG Wulong, ZHANG Jingyong, FAN Guangzhou. Evaluation and Projection of Dry- and Wet-Season Precipitation in Southwestern China Using CMIP5 Models[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 559-570. doi: 10.3878/j.issn.1006-9895.1408.14136

CMIP5模式对我国西南地区干湿季降水的模拟和预估

doi: 10.3878/j.issn.1006-9895.1408.14136
基金项目: 国家自然科学基金项目41275089, 国家重点基础研究发展计划(973计划)项目2012CB955604, 中国科学院"百人计划"项目

Evaluation and Projection of Dry- and Wet-Season Precipitation in Southwestern China Using CMIP5 Models

  • 摘要: 利用降水观测资料, 评估了参加国际耦合模式比较计划第五阶段(CMIP5)的34个全球模式对1986~2005年我国西南地区干湿季降水的模拟能力。结果表明, 34个CMIP5模式中分别有30和25个模式模拟的干季和湿季降水偏多。34个模式对我国西南地区干湿季降水的模拟能力差异较大, 大约半数模式的模拟值与观测值的空间相关系数通过了99%的信度检验, 且标准差之比小于2。利用两个技巧评分标准, 分别挑选出了对干湿季降水模拟最优的9个模式。最优模式集合平均结果要优于34个模式的集合平均, 更要优于大多数单个模式。进一步利用最优的9个模式的集合平均对RCP4.5和RCP8.5两种典型浓度路径下我国西南地区干湿季降水的变化进行了预估。相对于1986~2005年气候平均态, 在21世纪初期(2016~2035年), 我国西南地区干季降水变化表现为川西高原降水增多, 而四川盆地及攀西地区、重庆、贵州和云南的大部分地区降水减少;湿季降水变化表现为川西高原、贵州和广西大部分地区降水增多, 而四川盆地及攀西地区和云南降水减少。在21世纪中期(2046~2065年)和末期(2080~2099年), 西南地区干湿季降水普遍增多。在RCP8.5情景下, 降水的变化幅度要强于RCP4.5情景。
  • [1] Behrens L K, Martin T, Semenov V A, et al. 2012. The Arctic sea ice in the CMIP3 climate model ensemble—Variability and anthropogenic change [J]. The Cryosphere Discussions, 6 (6): 5317-5344.
    [2] Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models [J]. Chin. Sci. Bull., 58 (12): 1462-1472.
    [3] 陈海山, 范苏丹, 张新华. 2009. 中国近50 a极端降水事件变化特征的季节性差异 [J]. 大气科学学报, 32 (6): 744-751. Chen Haishan, Fan Sudan, Zhang Xinhua. 2009. Seasonal differences of variation characteristics of extreme precipitation events over China in the last 50 years [J]. Transactions of Atmospheric Sciences (in Chinese), 32 (6): 744-751.
    [4] Diffenbaugh N S, Giorgi F. 2012. Climate change hotspots in the CMIP5 global climate model ensemble [J]. Climatic Change, 114 (3-4): 813-822.
    [5] Feng L, Zhou T J, Wu B, et al. 2011. Projection of future precipitation change over China with a high-resolution global atmospheric model [J]. Adv. Atmos. Sci., 28 (2): 464-476.
    [6] Flato G M. 2004. Sea-ice and its response to CO2 forcing as simulated by global climate models [J]. Climate Dyn., 23 (3-4): 229-241.
    [7] Gao X J, Shi Y, Giorgi F. 2011. A high resolution simulation of climate change over China [J]. Sci. China Earth Sci., 54 (3): 462-472.
    [8] Guo Y, Dong W J, Ren F M, et al. 2013. Surface air temperature simulations over China with CMIP5 and CMIP3 [J]. Advances in Climate Change Research, 4 (3): 145-152.
    [9] 胡豪然, 毛晓亮, 梁玲. 2008. 近50年川渝地区夏季极端高温事件的时空演变特征 [J]. 高原山地气象, 28 (3): 15-20. Hu Haoran, Mao Xiaoliang, Liang Ling. 2008. Temporal and spatial variations of extreme High-temperature event of summer over Sichuan and Chongqing region in last 50 years [J]. Plateau and Mountain Meteorology Research (in Chinese), 28 (3): 15-20.
    [10] Hu Y Y, Tao L J, Liu J P. 2013. Poleward expansion of the Hadley circulation in CMIP5 simulations [J]. Adv. Atmos. Sci., 30 (3): 790-795.
    [11] Hua W J, Chen H S, Sun S L. 2013. Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models [J]. Theor. Appl. Climatol., 17 (3-4): 463-474, doi: 10.1007/s00704-013-1020-z.
    [12] IPCC. 2007. Climate Change 2007: The Physical Science Basis [M]. Solomon S, Qin D, Manning M, et al., Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1-940.
    [13] IPCC. 2013. Summary for policymarkers [M/OL]// IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, in press. 2013-09-30 [2013-09-30]. http://www.climate2013.org/ images/uploads/WGI_AR5_SPM_brochure.pdf.
    [14] Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chinese Science Bulletin, 58 (12): 1427-1435.
    [15] Jiang D B, Wang H J, Lang X M. 2005. Evaluation of East Asian climatology as simulated by seven coupled models [J]. Adv. Atmos. Sci., 22 (4): 479-495.
    [16] 江志红, 张霞, 王冀. 2008. IPCC-AR4模式对中国21世纪气候变化的情景预估 [J]. 地理研究, 27 (4): 787-799. Jiang Zhihong, Zhang Xia, Wang Ji. 2008. Projection of climate change in China in the 21st century by IPCC-AR4 models [J]. Geographical Research (in Chinese), 27 (4): 787-799.
    [17] 江志红, 陈威霖, 宋洁, 等. 2009. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估 [J]. 大气科学, 33 (1): 109-120. Jiang Zhihong, Chen Weilin, Song Jie, et al. 2009. Projection and evaluation of the precipitation extremes indices over china based on seven IPCC AR4 coupled climate models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (1): 109-120.
    [18] Joetzjer E, Douville H, Delire C, et al. 2013. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 [J]. Climate Dyn., 41 (11-12): 2921-2936.
    [19] Kharin V V, Zwiers F W, Zhang X, et al. 2013. Changes in temperature and precipitation extremes in the CMIP5 ensemble [J]. Climate Change, 119 (2): 345-357.
    [20] Lambert S J, Boer G J. 2001. CIMP1 evaluation and intercomparison of coupled climate models [J]. Climate Dyn., 17 (2-3): 83-106.
    [21] 李振朝, 韦志刚, 吕世华, 等. 2013. CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验 [J]. 高原气象, 32 (4): 921-928. Li Zhenchao, Wei Zhigang, Lü Shihua, et al. 2013. Verifications of surface air temperature and precipitation from CMIP5 model in Northern Hemisphere and Qinghai-Xizang plateau [J]. Plateau Meteorology (in Chinese), 32 (4): 921-928.
    [22] 刘晓冉, 李国平, 范广洲, 等. 2007. 我国西南地区1960~2000年降水资源变化的时空特征 [J]. 自然资源学报, 22 (5): 783-792. Liu Xiaoran, Li Guoping, Fan Guangzhou, et al. 2007. Spatial and temporal characteristics of precipitation resource in Southwest China during 1961-2000 [J]. Journal of Natural Resources (in Chinese), 22 (5): 783-792.
    [23] 马振峰, 彭骏, 高文良, 等. 2006. 近40年西南地区的气候变化事实 [J]. 高原气象, 25 (4): 633-642. Ma Zhenfeng, Peng Jun, Gao Wenliang, et al. 2006. Climate variation of Southwest China in recent 40 years [J]. Plateau Meteorology (in Chinese), 25 (4): 633-642.
    [24] Meehl G A, Boer J, Covey C, et al. 1997. Intercomparison makes for a better climate model [J]. Eos, Trans. Amer. Geophys. Union, 78 (41): 445-451.
    [25] Meehl G A, Boer J, Covey C, et al. 2000. The Coupled Model Intercomparison Project (CMIP) [J]. Bull. Amer. Meteor. Soc., 81: 313-318.
    [26] Meehl G A, Covey C, McAvaney B, et al. 2005. Overview of the coupled model intercomparison project [J]. Bull. Amer. Meteor. Soc., 86 (1): 89-93.
    [27] Meehl G A, Covey C, Delworth T, et al. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate change research [J]. Bull. Amer. Meteor. Soc., 88 (9): 1383-1394, doi: 10.1175/BAMS-88-9-1383.
    [28] Qu X, Huang G, Zhou W. 2013. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations [J]. Theor. Appl. Climatol., 117 (1-2): 123-131, doi: 10.1007/s00704-013-0995-9.
    [29] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. Journal of Geophysical Research, 106 (D7): 7183-7192.
    [30] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bulletin of the American Meteorological Society, 93(4): 485-498.
    [31] Torres R R, Marengo J A. 2014. Climate change hotspots over South America: From CMIP3 to CMIP5 multi-model datasets [J]. Theoretical and Applied Climatology, 117 (3-4): 579-587, doi: 10.1007/s00704-013-1030-x.
    [32] Wang L, Chen W. 2013. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34 (6): 2059-2078. doi: 10.1002/joc.3822
    [33] 王澄海, 吴永萍, 崔洋. 2009. CMIP研究计划的进展及其在中国地区的检验和应用前景 [J]. 地球科学进展, 24 (5): 461-468. Wang Chenghai, Wu Yongping, Cui Yang. 2009. Evaluating the progress of the CMIP and its application prospect in China [J]. Advances in Earth Science (in Chinese), 24 (5): 461-468.
    [34] Wang H J, Yu E T, Yang S. 2011. An exceptionally heavy snowfall in Northeast China: Large-scale circulation anomalies and hindcast of the NCAR WRF model [J]. Meteor. Atmos. Phys., 113 (1-2): 11-25
    [35] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56 (4): 1102-1111. Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102-1111.
    [36] Xin X G, Wu T W, Zhang J. 2013a. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center [J]. Advances in Climate Change Research, 4 (1): 41-49.
    [37] Xin X G, Cheng Y J, Wang F, et al. 2013b. Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models [J]. Adv. Atmos. Sci., 30 (3): 796-805.
    [38] 徐崇海, 沈新勇, 徐影. 2007. IPCC AR4 模式对东亚地区气候模拟能力的分析 [J]. 气候变化研究进展, 3 (5): 287-292. Xu Chonghai, Shen Xinyong, Xu Ying. 2007. An analysis of climate change in East Asia by using the IPCC AR4 simulations [J]. Advances in Climate Research (in Chinese), 3 (5): 287-292.
    [39] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models [J]. Atmos. Oceanic Sci. Lett., 5 (6): 489-494.
    [40] Xu Y, Gao X, Giorgi F. 2010. Upgrades to the reliability ensemble averaging method for Producing Probabilistic climate-change Projections [J]. Climate Research, 41 (1): 61-81.
    [41] Yao Y, Luo Y, Huang J B. 2012. Evaluation and projection of temperature extremes over China based on CMIP5 model [J]. Advances in Climate Change Research, 3 (4): 179-185.
    [42] Yao Y, Luo Y, Huang J B, et al. 2013. Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models [J]. J. Climate, 26 (19): 7692-7707.
    [43] 张宏芳, 陈海山. 2011a. 21个气候模式对东亚夏季环流模拟的评估Ⅰ: 气候态 [J]. 气象科学, 31 (2): 119-128. Zhang Hongfang, Chen Haishan. 2011a. Evaluation of summer circulation simulation over East Asia by 21 climate models. Part I: Climatology [J]. Scientia Meteorologica Sinica (in Chinese), 31 (2): 119-128.
    [44] 张宏芳, 陈海山. 2011b. 21个气候模式对东亚夏季环流模拟的评估Ⅱ: 年际变化 [J]. 气象科学, 31 (3): 247-257. Zhang Hongfang, Chen Haishan. 2011b. Evaluation of summer circulation simulation over East Asia by 21 climate models. Part II: Interannual variability [J]. Scientia Meteorologica Sinica (in Chinese), 31 (3): 247-257.
    [45] Zhang J, Li L, Zhou T J, et al. 2013. Evaluation of spring persistent rainfall over East Asia in CMIP3/CMIP5 AGCM simulations [J]. Adv. Atmos. Sci., 30 (6): 1587-1600.
    [46] Zhang J Y, Wang W C, Leung L R. 2008. Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States [J]. J. Geophys. Res., 113, D22109, doi: 10.1029/2008JD010136.
    [47] 张武龙, 张井勇, 范广洲. 2014. 我国西南地区干湿季降水的主模态分析 [J]. 大气科学, 38 (3): 590-602. Zhang Wulong, Zhang Jingyong, Fan Guangzhou. 2014. Dominant modes of dry-and wet-season precipitation in southwestern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3): 590-602.
    [48] 朱献, 董文杰. 2013. CMIP5耦合模式对北半球3-4月积雪面积的历史模拟和未来预估 [J]. 气候变化研究进展, 9 (3): 173-180. Zhu Xian, Dong Wenjie. 2013. Evaluation and projection of Northern Hemisphere March-April snow covered area simulated by CMIP5 coupled climate models [J]. Adv. Clim. Change Res. (in Chinese), 9 (3): 173-180.
  • 加载中
计量
  • 文章访问数:  2620
  • HTML全文浏览量:  22
  • PDF下载量:  2953
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-05
  • 修回日期:  2014-08-22

目录

    /

    返回文章
    返回