高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响

李国平 卢会国 黄楚惠 范瑜越 张博

李国平, 卢会国, 黄楚惠, 范瑜越, 张博. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J]. 大气科学, 2016, 40(1): 131-141. doi: 10.3878/j.issn.1006-9895.1504.15125
引用本文: 李国平, 卢会国, 黄楚惠, 范瑜越, 张博. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J]. 大气科学, 2016, 40(1): 131-141. doi: 10.3878/j.issn.1006-9895.1504.15125
LI Guoping, LU Huiguo, HUANG Chuhui, FAN Yuyue, ZHANG Bo. A Climatology of the Surface Heat Source on the Tibetan Plateau in Summer and Its Impacts on the Formation of the Tibetan Plateau Vortex[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1): 131-141. doi: 10.3878/j.issn.1006-9895.1504.15125
Citation: LI Guoping, LU Huiguo, HUANG Chuhui, FAN Yuyue, ZHANG Bo. A Climatology of the Surface Heat Source on the Tibetan Plateau in Summer and Its Impacts on the Formation of the Tibetan Plateau Vortex[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1): 131-141. doi: 10.3878/j.issn.1006-9895.1504.15125

青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响

doi: 10.3878/j.issn.1006-9895.1504.15125
基金项目: 国家自然科学基金91337215、41175045,国家重点基础研究发展计划(973计划)项目2012CB417202,公益性行业(气象)科研专项GYHY201206042

A Climatology of the Surface Heat Source on the Tibetan Plateau in Summer and Its Impacts on the Formation of the Tibetan Plateau Vortex

  • 摘要: 根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因.得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势.其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降.地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点.高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势.地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后.夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当.地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强.地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变.根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期.低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变.夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关.因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期.本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性.
  • [1] 包庆, Bin Wang, 刘屹岷, 等. 2008. 青藏高原增暖对东亚夏季风的影响——大气环流模式数值模拟研究 [J]. 大气科学, 32 (5): 997-1005. Bao Qing, Bin Wang, Liu Yimin, et al. 2008. The impact of the Tibetan Plateau warming on the East Asian summer monsoon—A study of numerical simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (5): 997-1005.
    [2] 陈伯民, 钱正安, 张立盛. 1996. 夏季青藏高原低涡形成和发展的数值模拟 [J]. 大气科学, 20 (4): 491-502. Chen Bomin, Qian Zheng'an, Zhang Lisheng. 1996. Numerical simulation of the formation and development of vortices over the Qinghai-Xizang Plateau in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 20 (4): 491-502.
    [3] Dell'osso L, Chen S J. 1986. Numerical experiments on the genesis of vortices over the Qinghai-Tibet Plateau [J]. Tellus A, 38A (3): 236-250.
    [4] 董敏, 朱文妹, 徐祥德. 2001. 青藏高原地表热通量变化及其对初夏东亚大气环流的影响 [J]. 应用气象学报, 12 (4): 458-468. Dong Min, Zhu Wenmei, Xu Xiangde. 2001. The variation of surface heat flux over Tibet Plateau and its influences on the East Asia circulation in early summer [J]. Quarterly Journal of Applied Meteorology (in Chinese), 12 (4): 458-468.
    [5] Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations [J]. J. Climate, 21 (13): 3149-3164.
    [6] Duan Anmin, Liu Yimin, Wu Guoxiong. 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer [J]. Science in China Series D: Earth Science, 48 (2): 250-257.
    [7] Duan A M, Wu G X. Zhang Q, et al. 2006. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions [J]. Chinese Science Bulletin, 51 (11): 1396-1400.
    [8] Feng X Y, Liu C H, Rasmussen R, et al. 2014. A 10-year climatology of Tibetan Plateau vortices with NCEP climate forecast system reanalysis [J]. J. Appl. Meteor. Climatol., 53 (1): 34-46.
    [9] Flohn H. 1957. Large-scale aspects of the "summer monsoon" in South and East Asia [J]. J. Meteor. Soc. Japan, 75: 180-186.
    [10] Gao S, Ping F. 2005. An experiment study of lee vortex with large topography forcing [J]. Chinese Sci. Bull., 50 (3): 248-255.
    [11] 黄荣辉. 1985. 夏季西藏高原与落基山脉对北半球定常行星波形成的动力作用 [J]. 大气科学, 9 (3): 243-250. Huang Ronghui. 1985. The dynamic effect of the Tibetan Plateau and the Rocky Mountain on the formation of stationary planetary waves in the Northern Hemisphere in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 9 (3): 243-250.
    [12] 蒋艳蓉, 何金海, 温敏, 等. 2009. 春季青藏高原东侧涡旋对特征及其对我国天气气候的影响 [J]. 高原气象, 28 (5): 945-954. Jiang Yanrong, He Jinhai, Wen Min, et al. 2009. Characteristic of a couple of vortexes on the east side of Tibetan Plateau from winter to spring and their impact on the weather and climate in China [J]. Plateau Meteorology (in Chinese), 28 (5): 945-954.
    [13] Lau W K M, Kim M -K, Kim K -M, et al. 2010. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols [J]. Environ. Res. Lett., 5 (2): 025204.
    [14] 李栋梁, 李维京, 魏丽, 等. 2003. 青藏高原地面感热及其异常的诊断分析 [J]. 气候与环境研究, 8 (1): 71-83. Li Dongliang, Li Weijing, Wei Li, et al. 2003. A diagnostic study of surface sensible heat flux anomaly over the Qinghai-Xizang Plateau [J]. Climatic and Environmental Research (in Chinese), 8 (1): 71-83.
    [15] 李国平, 刘红武. 2006. 地面热源强迫对青藏高原低涡作用的动力学分析 [J]. 热带气象学报, 22 (6): 632-637. Li Guoping, Liu Hongwu. 2006. A dynamical study of the role of surface heating on the Tibetan Plateau vortices [J]. Journal of Tropical Meteorology (in Chinese), 22 (6): 632-637.
    [16] 李国平, 赵邦杰, 杨锦青. 2002. 地面感热对青藏高原低涡流场结构及发展的作用 [J]. 大气科学, 26 (4): 519-525. Li Guoping, Zhao Bangjie, Yang Jinqing. 2002. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (4): 519-525.
    [17] 李国平, 赵福虎, 黄楚惠, 等. 2014. 基于NCEP资料的近30年夏季青藏高原低涡的气候特征 [J]. 大气科学, 38 (4): 756-769. Li Guoping, Zhao Fuhu, Huang Chuhui, et al. 2014. Analysis of 30-year climatology of the Tibetan Plateau vortex in summer with NCEP reanalysis data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (4): 756-769.
    [18] 李国平, 符淙斌, 叶笃正. 1991. 大尺度降雨异常对地面过程的影响——一类气候反馈机制的初步研究 [J]. 大气科学, 15 (1): 23-32. Li Guoping, Fu Congbin, Ye Duzheng. 1991. Study on the influence of large-scale persistent rainfall anomalies on land surface processes—One kind of climatic feedback processes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 15 (1): 23-32.
    [19] Li Yaodong, Wang Yun, Song Yang, et al. 2008. Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation [J]. J. App. Meteor. Climatol., 47 (10): 2679-2695.
    [20] 李林, 陈晓光, 王振宇, 等. 2010. 青藏高原区域气候变化及其差异性研究 [J]. 气候变化研究进展, 2010, 6 (3): 181-186. Li Lin, Chen Xiaoguang, Wang Zhenyu, et al. 2010. Climate change and its regional differences over the Tibetan Plateau [J]. Advances in Climate Change Research (in Chinese), 6 (3): 181-186.
    [21] Liu X D, Chen B D. 2000. Climatic warming in the Tibetan Plateau during recent decades [J]. Int. J. Climatol., 20 (14): 1729-1742.
    [22] Liu Xiaoran, Li Guoping. 2007. Analytical solutions for thermal forcing vortices in boundary layer and its applications [J]. Applied Mathematics and Mechanics, 28 (4): 429-439.
    [23] Liu Xin, Wu Guoxiong, Li Weiping, et al. 2001. Thermal adaptation of the large-scale circulation to the summer heating over the Tibetan Plateau [J]. Progress in Natural Science, 11 (3): 207-214.
    [24] 骆美霞, 朱抱真, 张学洪. 1983. 青藏高原对东亚纬向型环流形成的动力作用 [J]. 大气科学, 7 (2): 145-152. Luo Meixia, Zhu Baozhen, Zhang Xuehong. 1983. The dynamic effect of Tibetan Plateau on the formation of zonal type circulation over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 7 (2): 145-152.
    [25] 罗四维, 杨洋. 1992. 一次青藏高原夏季低涡的数值模拟研究 [J]. 高原气象, 11 (1): 39-48. Luo Siwei, Yang Yang. 1992. A case study on numerical simulation of summer vortex over Qinghai-Xizang (Tibetan) Plateau [J]. Plateau Meteorology (in Chinese), 11 (1): 39-48.
    [26] Luo S W, He M L, Liu X D. 1994. Study on the vortex of the Qinghai-Xizang (Tibet) Plateau in summer [J]. Science in China (Series B), 37 (5), 601-612.
    [27] Shen R J, Reiter E R, Bresch J F. 1986. Some aspects of the effects of sensible heating on the development of summer weather system over the Qinghai-Xizang Plateau [J]. J. Atmos. Sci., 43: 2241-2260.
    [28] 宋雯雯, 李国平, 唐钱奎. 2012. 加热和水汽对两例高原低涡影响的数值试验 [J]. 大气科学, 36 (1): 117-129. Song Wenwen, Li Guoping, Tang Qiankui. 2012. Numerical simulation of the effect of heating and water vapor on two cases of plateau vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (1): 117-129.
    [29] Stocker T, Qin D, Plattner G-K, et al. 2013. Technical summary [M]// Climate Change 2013: The Physical Science Basis. Stocker T F, Qin D, Plattne G K, et al., Eds. Cambridge, UK and New York, NY, USA: Cambridge University Press.
    [30] Sugimoto S, Ueno K. 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts [J]. Journal of Geophysical Research: Atmospheres, 115 (D16): D16105, doi: 10.1029/2009JD013609.
    [31] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bulletin of the American Meteorological Society, 62 (1): 23-30.
    [32] 田珊儒, 段安民, 王子谦, 等. 2015. 地面加热与高原低涡和对流系统相互作用的一次个例研究 [J]. 大气科学, 39 (1): 125-136. Tian Shanru, Duan Anmin, Wang Ziqian, et al. 2015. Interaction of surface heating, the Tibetan Plateau vortex, and a convective system: A case study [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (1): 125-136.
    [33] 王鑫, 李跃清, 郁淑华, 等. 2009. 青藏高原低涡活动的统计研究 [J]. 高原气象, 28 (1): 64-71. Wang Xin, Li Yueqing, Yu Shuhua, et al. 2009. Statistical study on the plateau low vortex activities [J]. Plateau Meteorology (in Chinese), 28 (1): 64-71.
    [34] 王同美, 吴国雄, 应明. 2011. NCEP/NCAR(Ⅰ、Ⅱ)和ERA40再分析加热资料比较 [J]. 中山大学学报(自然科学版), 50 (5): 128-134. Wang Tongmei, Wu Guoxiong, Ying Ming. 2011. Comparison of diabatic heating data from NCEP/NCAR (I, II) and ERA40 [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 50 (5): 128-134.
    [35] 王学佳, 杨梅学, 万国宁. 2013. 近60年青藏高原地区地面感热通量的时空演变特征 [J]. 高原气象, 32 (6): 1557-1567. Wang Xuejia, Yang Meixue, Wan Guoning. 2013. Temporal-spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizang Plateau during last 60 years [J]. Plateau Meteorology (in Chinese), 32 (6): 1557-1567.
    [36] Wang M R, Zhou S W, Duan A M. 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data [J]. Chinese Sci. Bull., 57 (5): 548-557.
    [37] 吴国雄, 张永生. 1998. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发 I:爆发地点 [J]. 大气科学, 22 (6): 825-838. Wu Guoxiong, Zhang Yongsheng. 1998. Thermal and mechanical forcing of the Tibetan Plateau and Asian monsoon onset. Part I: Situating of the onset [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22 (6): 825- 838.
    [38] 吴国雄, 张永生. 1999. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发 II:爆发时间 [J]. 大气科学, 23 (1): 51-61. Wu Guoxiong, Zhang Yongsheng. 1999. Thermal and mechanical forcing of the Tibetan Plateau and Asian monsoon onset. Part II: Timing of the onset [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23 (1): 51-61.
    [39] Wu Guoxiong, Liu Yimin, Wang Tongmei, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate [J]. Journal of Hydrometeorology, 8 (Special Section): 770-789.
    [40] 徐祥德. 2009. 青藏高原"敏感区"对我国灾害天气气候的影响及其监测 [J]. 中国工程科学, 11 (10): 96-107. Xu Xiangde. 2009. The effects of sensitive region over Tibetan Plateau on disastrous weather and climate and its monitoring [J]. Engineering Science (in Chinese), 11 (10): 96-107.
    [41] 徐兴奎, 陈红, Levy J K. 2008. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析 [J]. 科学通报, 53 (4): 456-462. Xu XingKui, Chen Hong, Levy J K. 2008. The characteristics of spatial and temporal variations on Tibetan Plateau and its genetic analysis under the background of climate warming [J]. Chinese Sci. Bull. (in Chinese), 53 (4): 456-462.
    [42] Yang K, Guo X F, Wu B Y. 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau [J]. Sci. China Earth Sci., 54 (1): 19-28.
    [43] 叶笃正, 高由禧. 1979. 青藏高原气象学 [M], 北京: 科学出版社, 278pp. Ye Duzheng, Gao Youxi. 1979. Qinghai-Xizang Plateau Meteorology (in Chinese) [M]. Beijing: Science Press, 278pp.
    [44] 叶笃正, 罗四维, 朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡 [J]. 气象学报, 28 (2): 108-121. Ye Duzheng, Luo Siwei, Zhu Baozhen. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding [J]. Acta Meteorologica Sinica (in Chinese), 28 (2): 108-121.
    [45] Ye D Z. 1981. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood [J]. Bull. Amer. Meteor. Soc., 62 (1): 14-19.
    [46] Ye D Z, Wu G X. 1998. The role of the heat source of the Tibetan Plateau in the general circulation [J]. Meteor. Atmos. Phys., 67 (1-4): 181-198.
    [47] 赵玉春, 王叶红. 2010. 高原涡诱生西南涡特大暴雨成因的个例研究 [J].高原气象, 29 (4): 819-831. Zhao Yuchun, Wang Yehong. 2010. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain [J]. Plateau Meteorology (in Chinese), 29 (4): 819-831.
    [48] Zhu X Y, Liu Y M, Wu G X. 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets [J]. Sci. China Earth Sci., 55 (5): 779-786.
    [49] Zhu Yuxiang, Liu Haiwen, Ding Yihui, et al. 2014. Interdecadal variation of spring snow depth over the Tibetan Plateau and its influence on summer rainfall over East China in the recent 30 years [J]. Int. J. Climatol., doi: 10.1002/joc.4239.
  • [1] 马婷, 刘屹岷, 吴国雄, 毛江玉, 张冠舜.  青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1904.18275
    [2] 谢志昂, 段安民.  盛夏青藏高原热源与菲律宾海对流活动的联系, 大气科学. doi: 10.3878/j.issn.1006-9895.1611.16198
    [3] 段丽君, 段安民, 胡文婷, 巩远发.  2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1701.16205
    [4] 王黎娟, 葛静.  夏季青藏高原大气热源低频振荡与南亚高压东西振荡的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1509.15164
    [5] 李娟, 李跃清, 蒋兴文, 高笃鸣.  青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1509.15197
    [6] 戴逸飞, 王慧, 李栋梁.  卫星遥感结合气象资料计算的青藏高原地面感热特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1512.15225
    [7] 刘云丰, 李国平.  夏季高原大气热源的气候特征以及与高原低涡生成的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1512.15184
    [8] 胡迪, 李跃清.  青藏高原东侧四川地区夜雨时空变化特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1405.13307
    [9] 李国平, 赵福虎, 黄楚惠, 牛金龙.  基于NCEP资料的近30年夏季青藏高原低涡的气候特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2013.13235
    [10] 李斐, 李建平, 李艳杰, 郑菲.  青藏高原绕流和爬流的气候学特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.11214
    [11] 李跃清.  青藏高原地面加热及上空环流场与东侧旱涝预测的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2003.01.10
    [12] 孙颖, 丁一汇.  青藏高原热源异常对1999年东亚夏季风异常活动的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.06.10
    [13] 韦志刚, 黄荣辉, 陈文, 董文杰.  青藏高原地面站积雪的空间分布和年代际变化特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.04.07
    [14] 李国平, 赵邦杰, 杨锦青.  地面感热对青藏高原低涡流场结构及发展的作用, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.04.09
    [15] 卞林根, 陆龙骅, 逯昌贵, 陈彦杰, 高志球, 刘辉志, 张宏升, 陈家宜.  1998年夏季青藏高原辐射平衡分量特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.05.01
    [16] 苏文颖, 毛节泰, 纪飞.  青藏高原出射长波辐射特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.03.03
    [17] 陈伯民, 钱正安, 张立盛.  夏季青藏高原低涡形成和发展的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1996.04.14
    [18] 陈伯民, 钱正安.  夏季青藏高原地区降水和低涡的数值预报试验, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.01.07
    [19] 章基嘉, 徐祥德, 苗峻峰.  青藏高原地面热力异常对夏季江淮流域持续暴雨形成作用的数值试验, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.03.02
    [20] 孙国武, 陈葆德.  青藏高原大气低频振荡与低涡群发性的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.01.14
  • 加载中
计量
  • 文章访问数:  2964
  • HTML全文浏览量:  0
  • PDF下载量:  3056
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-09

目录

    /

    返回文章
    返回