Verification and Correction of East China Summer Rainfall Prediction Based on BCC_CSM Model
-
摘要: 基于国家气候中心第二代季节预测模式的历史回报试验数据,检验了模式对我国东部夏季降水的预测能力,探讨了预测误差形成的可能原因,并应用降尺度方法提高了模式的降水预测技巧。分析表明:(1)模式能在一定程度上把握我国东部夏季降水时空变率的两个主要模态(偶极子型模态和全区一致型模态),但是不同超前时间的预测在刻画模态方差贡献、异常空间分布特征、时间系数的年际变化等方面存在明显误差;(2)模式能够合理预测大尺度环流和海表温度(SST)的变化特征,但是对中国东部夏季降水的总体预测技巧有限,这与模式不能准确刻画西太平洋副热带高压、大陆高压、中高纬阻塞高压等环流系统以及热带太平洋、印度洋SST变率对中国东部降水模态的影响有关;(3)针对1991~2003年回报试验数据中的500 hPa位势高度、850 hPa纬向风和经向风、SST变量,在全球范围内寻找并定位与中国东部站点降水关系最密切的预报因子,进而建立针对降水预测的单因子线性回归、多因子逐步和多元回归模型。采用2004~2013年回报试验对所建立的降水预测模型进行了独立检验,结果表明:所建立的降尺度预测模型能显著提高中国东部地区夏季降水的预报技巧。以6月1日起报试验为例,预测的第一模态(第二模态)与观测的空间相关系数由原始的0.12(0.48)提高到了0.58(0.80),时间相关系数则从0.47(0.15)提高到0.80(0.67);其它超前时间的预测试验中,降尺度预测模型的降水预测技巧相比模式原始预测技巧也同样明显提高。Abstract: Based on the re-forecast data from the second-generation seasonal prediction model of National Climate Center, the model's capability to predict summer rainfall over East China and possible reasons for the forecast errors are investigated. Furthermore, the rainfall forecast skill is improved by the application of downscaling approaches. Results indicate that the model is able to capture the two major modes of spatiotemporal variability of summer rainfall over East China to some extent (i.e. the dipole mode and the uniform-distribution mode). However, forecasts at various lead times show obvious errors in variance contributions of these modes and spatial distributions of anomalies and interannual variations of time coefficients, etc. In addition, although the model can reasonably reproduce variations of large-scale circulation and sea surface temperature (SST), it shows limited skills in forecasting summer rainfall over East China. This is partially due to the model's inability to realistically depict the impacts of circulation systems such as the West Pacific subtropical high, the continental high and the middle-high-latitude blocking high. Influences of SST in the tropical Pacific and Indian Ocean on major rainfall modes over East China are also not well described in the model. Furthermore, in terms of the 500-hPa geopotential height, 850-hPa zonal and meridional winds, and SST in reforecasts for 1991-2003, predictors with the closest relationship with East China rainfall are identified on global scale and used to establish the single-factor linear regression, multi-factor stepwise regression, and multiple regression downscaling models for rainfall prediction. These downscaling rainfall prediction models are tested independently using reforecasts for 2004-2013, and significant improvements in the forecast of East China summer rainfall are obtained. For the forecast initialized on June 1, for example, the spatial correlation coefficient between predicted and observed EOF1 (EOF2) modes increases from 0.12 (0.48) for the original prediction to 0.58 (0.80) for the downscale prediction, and the corresponding temporal correlation coefficient rises from 0.47 (0.15) to 0.80 (0.67). Compared to the original forecasts by the model at other lead times, the downscaling forecast models also significantly enhance the prediction skill of rainfall.
-
Key words:
- BCC_CSM model /
- East China summer rainfall /
- Mode /
- Lead time /
- Downscaling
-
图 2 (a、b)观测与(c-j)不同超前时间的模式预测的1991~2013年夏季降水EOF1(左列)、EOF2(右列)模态的空间分布(PCC:空间相关系数)
Figure 2. Spatial distributions of the first (EOF1, left column) and second (EOF2, right column) EOF modes of summer rainfall from (a, b) observations and (c-j) predictions at different lead times during 1991-2013 (PCC: spatial correlation coefficient)
图 4 (a、b)观测和(c-j)不同超前时间模式预测的夏季降水PC1(左列)、PC2(右列)与500 hPa位势高度场的相关分布。填色区通过95%的信度检验
Figure 4. Correlation of PC1 (left column) and PC2 (right column) of summer rainfall from (a, b) observations and (c-j) predictions at different lead times with 500-hPa geopotential height. The shaded areas indicate the correlation is statistically significant above the 95% confidence level
图 5 (a、b)观测、(c-j)不同超前时间预测的夏季降水PC1(左列)、PC2(右列)与850 hPa风场的回归分布。回归系数小于3 m s-1的量值未给出,填色区通过95%的信度检验
Figure 5. Regressions of 850-hPa winds on summer rainfall PC1 (left column) and PC2 (right column) from (a, b) observations and (c-j) predictions at different lead times. Regression coefficients less than 3 m s-1 are not shown. The shaded areas indicate correlations statistically significant above the 95% confidence level
图 8 2004~2013年中国东部夏季降水EOF1模态的空间分布:(a)观测;(b)LM0原始预测;(c-f)单因子线性回归模型预测[500 hPa位势高度(H500)、850 hPa纬向风(U850)、850 hPa经向风(V850)、SST];(g)多因子逐步回归模型预测;(h)多因子多元回归模型预测
Figure 8. Spatial distributions of the EOF1 mode of East China summer rainfall during 2004-2013 from (a) observations, (b) the LM0 original prediction, (c-f) single-factor linear regression predictions [500 hPa geopotential height (H500), 850 hPa zonal winds (U850), 850 hPa meridional winds (V850), SST], (g) multi-factor stepwise regression prediction, and (h) multi-factor multiple regression prediction
图 11 不同超前时间(a、c、e、g)原始预测、(b、d、f、h)多元回归降尺度模型预测的2004~2013年中国东部夏季降水与观测的时间相关系数分布;(i)原始预测和多元回归降尺度模型预测降水与观测的空间相关系数的年际变化
Figure 11. Time correlation coefficients of East China summer rainfalls between observations with (a, c, e, g) original predictions and (b, d, f, h) multiple regression downscaling predictions at different lead times during 2004-2013. (i) Interannual variations of spatial correlation coefficients of the rainfalls between observations with original predictions and with multiple regression downscaling results
表 1 观测、不同超前时间预测的夏季降水PC1、PC2和各项指数(西太平洋副高指数、大陆高压指数、乌拉尔山阻高指数、鄂霍次克海阻高指数、Niño3.4 SST指数、太平洋SST主模态时间系数和印度洋SST主模态时间系数)的年际相关
Table 1. Interannual correlations between PC1/PC2 of the summer rainfall and various indices (the western Pacific subtropical high, the continental high, the Ural blocking high, the Okhotsk blocking high, Niño3.4 SST, time coefficients of the major Pacific SST mode, and time coefficients of the major Indian Ocean SST mode) for observations and predictions at different lead times
夏季降水PC1、PC2和各项指数的相关 西太副高强度指数 大陆高压指数 乌拉尔山阻高指数 鄂霍次克海阻高指数 Niño3.4 SST指数 太平洋SST主模态时间系数 印度洋SST主模态时间系数 OBS PC1 -0.25 0.08 -0.54* 0.02 0.28 0.32 -0.46* PC2 0.06 0.10 0.00 0.00 -0.29 -0.23 LM0 PC1 -0.12 0.52* -0.01 0.25 0.19 0.40 0.03 PC2 0.53* 0.07 -0.11 0.24 -0.50* -0.44* 0.23 LM1 PC1 -0.31 0.58* -0.38 0.35 0.37 0.52* -0.37 PC2 0.52* -0.18 -0.41 -0.53* -0.64* -0.42* 0.13 LM2 PC1 0.15 0.32 -0.45* -0.16 0.48* 0.52* 0.04 PC2 0.64* 0.18 -0.22 -0.03 -0.47* -0.42* 0.54* LM3 PC1 0.13 0.48* 0.35 0.08 0.00 0.04 PC2 0.62* 0.32 -0.29 -0.23 -0.75* -0.69* 0.49* 注:加粗字体并有“*”表示通过95%的信度检验。 表 2 2004~2013年不同超前时间原始预测(ORI)、多元回归(M-Reg)降尺度模型预测的降水EOF空间模态(时间系数)与观测的空间(时间)相关
Table 2. Spatial (temporal) correlations between EOF spatial modes (time coefficients) of summer rainfall from observations and predictions at various lead times during 2004-2013. The original predictions (ORI) and multiple regression(M-Reg) downscaling predictions at different lead times are shown in turn
预测的夏季降水EOF空间模态(时间系数)与观测的空间(时间)相关 EOF1(PCC) EOF2(PCC) PC1(TCC) PC2(TCC) LM0 ORI 0.12 0.48 0.47 0.15 M-Reg 0.58 0.80 0.80 0.67 LM1 ORI 0.22 0.39 0.35 0.19 M-Reg 0.60 0.77 0.81 0.78 LM2 ORI 0.40 0.42 0.58 0.17 M-Reg 0.58 0.65 0.73 0.58 LM3 ORI 0.16 0.58 0.60 0.34 M-Reg 0.60 0.89 0.95 0.77 -
[1] Artale V, Calmanti S, Carillo A, et al. 2010. An atmosphere-ocean regional climate model for the Mediterranean area:Assessment of a present climate simulation[J]. Climate Dyn., 35 (5):721-740, doi: 10.1007/s00382-009-0691-8. [2] Bengtsson L, Schlese U, Roeckner E, et al. 1993. A two-tiered approach to long-range climate forecasting[J]. Science, 261 (5124):1026-1029, doi: 10.1126/science.261.5124.1026. [3] Charney J G, Shukla J. 1981. Predictability of monsoons[M]//Lighthill J, Pearce R P. Monsoon Dynamics. Cambridge:Cambridge University Press. [4] 陈官军, 魏凤英. 2012. 基于低频振荡特征的夏季江淮持续性降水延伸期预报方法[J]. 大气科学, 36 (3):633-644. doi: 10.3878/j.issn.1006-9895.2011.11111Chen Guanjun, Wei Fengying. 2012. An extended-range forecast method for the persistent heavy rainfall over the Yangtze-Huaihe River valley in summer based on the low-frequency oscillation characteristics[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (3):633-644, doi:10.3878/j.issn. 1006-9895.2011.11111. [5] 丁一汇, 刘一鸣, 宋永加, 等. 2002. 我国短期气候动力预测模式系统的研究及试验[J]. 气候与环境研究, 7 (2):236-246. doi: 10.3878/j.issn.1006-9585.2002.02.11Ding Yihui, Liu Yiming, Song Yongjia, et al. 2002. Research and experiments of the dynamical model system for short-term climate prediction[J]. Climatic and Environmental Research (in Chinese), 7 (2):236-246, doi:10.3878/j. issn.1006-9585.2002.02.11. [6] 丁一汇, 李清泉, 李维京, 等. 2004. 中国业务动力季节预报的进展[J]. 气象学报, 62 (5):598-612. doi: 10.3321/j.issn:0577-6619.2004.05.007Ding Yihui, Li Qingquan, Li Weijing, et al. 2004. Advance in seasonal dynamical prediction operation in China[J]. Acta Meteor. Sinica (in Chinese), 62 (5):598-612, doi: 10.3321/j.issn:0577-6619.2004.05.007. [7] 董敏, 吴统文, 王在志, 等. 2013. BCC_CSM1.0模式对20世纪降水及其变率的模拟[J]. 应用气象学报, 24 (1):1-11. doi: 10.3969/j.issn.1001-7313.2013.01.001Dong Min, Wu Tongwen, Wang Zaizhi, et al. 2013. Simulation of the precipitation and its variation during the 20th century using the BCC climate model (BCC_CSM1.0)[J]. Journal of Applied Meteorological Science (in Chinese), 24 (1):1-11, doi: 10.3969/j.issn.1001-7313.2013.01.001. [8] Fu X H, Wang B, Bao Q, et al. 2009. Impacts of initial conditions on monsoon intraseasonal forecasting[J]. Geophys. Res. Lett., 36 (8):L14812, doi: 10.1029/2009GL037166. [9] Harzallah A, Sadourny R. 1995. Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model[J]. J. Climate, 8 (3):474-495, doi: 10.1175/1520-0442(1995)008<0474:IVSFAV>2.0.CO;2. [10] Ji J J, Huang M, Li K R. 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century[J]. Science in China Series D:Earth Science, 51 (6):885-898, doi: 10.1007/s11430-008-0039-y. [11] Jiang X W, Yang S, Li Y Q, et al. 2013. Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System Version 2[J]. J. Climate, 26 (11):3708-3727, doi: 10.1175/JCLI-D-12-00437.1. [12] Juneng L, Tangang F T, Kang H W, et al. 2010. Statistical downscaling forecasts for winter monsoon precipitation in Malaysia using multimodel output variables[J]. J. Climate, 23 (1):17-27, doi: 10.1175/2009JCLI2873.1. [13] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-II Reanalysis (R-2)[J]. Bull. Amer. Meteor. Soc., 83 (11):1631-1643, doi: 10.1175/BAMS-83-11-1631. [14] Kang H W, Zhu C W, Zuo Z Y, et al. 2011. Statistical downscaling of pattern projection using multi-model output variables as predictors[J]. Acta Meteorologica Sinica, 25 (3):293-302, doi: 10.1007/s13351-011-0305-3. [15] Ke Z J, Zhang P Q, Dong W J, et al. 2009. A new way to improve seasonal prediction by diagnosing and correcting the intermodel systematic errors[J]. Mon. Wea. Rev., 137 (6):1898-1907, doi: 10.1175/2008MWR2676.1. [16] Kirtman B P, Schneider E K, Straus D M, et al. 2011. How weather impacts the forced climate response[J]. Climate Dyn., 37 (11-12):2389-2416, doi: 10.1007/s00382-011-1084-3. [17] Krishnamurti T N, Mitra A K, Kumar T S V V, et al. 2006. Seasonal climate forecasts of the South Asian monsoon using multiple coupled models[J]. Tellus A, 58 (4):487-507, doi: 10.1111/j.1600-0870.2006.00184.x. [18] Kumar V, Krishnamurti T N. 2012. Improved seasonal precipitation forecasts for the Asian monsoon using 16 atmosphere-ocean coupled models. Part I:Climatology[J]. J. Climate, 25 (1):39-64, doi: 10.1175/2011JCLI4125.1. [19] 郎咸梅, 王会军, 姜大膀. 2004. 应用九层全球大气格点模式进行跨季度短期气候预测系统性试验[J]. 地球物理学报, 47 (1):19-24. doi: 10.3321/j.issn:0001-5733.2004.01.004Lang Xianmei, Wang Huijun, Jiang Dabang. 2004. Extraseasonal short-term predictions of summer climate with IAP9L-AGCM[J]. Chinese J. Geophys. (in Chinese), 47 (1):19-24, doi:10.3321/j.issn:0001-5733. 2004.01.004. [20] Lee J Y, Wang B, Kang I S, et al. 2010. How are seasonal prediction skills related to models' performance on mean state and annual cycle?[J]. Climate Dyn., 35 (2):267-283, doi: 10.1007/s00382-010-0857-4. [21] Li C F, Lu R Y, Dong B W. 2012. Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES[J]. Climate Dyn., 39 (2):329-346, doi: 10.1007/s00382-011-1274-z. [22] 李维京, 张培群, 李清泉, 等. 2005. 动力气候模式预测系统业务化及其应用[J]. 应用气象学报, 16 (S1):1-11. doi: 10.3969/j.issn.1001-7313.2005.z1.001Li Weijing, Zhang Peiqun, Li Qingquan, et al. 2005. Research and operational application of dynamical climate model prediction system[J]. J. Appl. Meteor. Sci. (in Chinese), 16 (S1):1-11, doi: 10.3969/j.issn.1001-7313.2005.z1.001. [23] 李维京, 郑志海, 孙丞虎. 2013. 近年来我国短期气候预测中动力相似预测方法研究与应用进展[J]. 大气科学, 37 (2):341-350. doi: 10.3878/j.issn.1006-9895.2012.12311Li Weijing, Zheng Zhihai, Sun Chenghu. 2013. Improvements to dynamical analogue climate prediction method in China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2):341-350, doi:10.3878/j. issn.1006-9895.2012.12311. [24] 林朝晖, 李旭, 赵彦, 等. 1998. 中国科学院大气物理研究所短期气候预测系统的改进及其对1998年全国汛期旱涝形势的预测[J]. 气候与环境研究, 3 (4):339-348. doi: 10.3878/j.issn.1006-9585.1998.04.06Lin Zhaohui, Li Xu, Zhao Yan, et al. 1998. An improved short-term climate prediction system and its application to the extraseasonal rediction of rainfall anomaly in China for 1998[J]. Climatic and Environmental Research (in Chinese), 3 (4):339-348, doi: 10.3878/j.issn.1006-9585.1998.04.06. [25] Lin Z H, Zeng Q C. 1997. Simulation of East Asian summer monsoon by using an improved AGCM[J]. Adv. Atmos. Sci., 14 (4):513-526, doi: 10.1007/s00376-997-0069-y. [26] Liu X W, Yang S, Kumar A, et al. 2013. Diagnostics of subseasonal prediction biases of the Asian summer monsoon by the NCEP climate forecast system[J]. Climate Dyn., 41 (5-6):1453-1474, doi: 10.1007/s00382-012-1553-3. [27] Liu X W, Yang S, Li Q P, et al. 2014a. Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2[J]. Climate Dyn., 42 (5-6):1487-1508, doi: 10.1007/s00382-013-1831-8. [28] Liu X W, Wu T W, Yang S, et al. 2014b. Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon hindcasted by BCC_CSM1.1(m)[J]. Adv. Atmos. Sci., 31 (5):1051-1064, doi: 10.1007/s00376-014-3192-6. [29] Liu X W, Wu T W, Yang S, et al. 2015. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m)[J]. Adv. Atmos. Sci., 32 (8):1156-1172, doi: 10.1007/s00376-015-4194-8. [30] Liu Y, Fan K. 2013. A new statistical downscaling model for autumn precipitation in China[J]. Int. J. Climatol., 33 (6):1321-1336, doi: 10.1002/joc.3514. [31] Liu Y, Fan K. 2014. An application of hybrid downscaling model to forecast summer precipitation at stations in China[J]. Atmos. Res., 143:17-30, doi: 10.1016/j.atmosres.2014.01.024. [32] 刘芸芸, 李维京, 左金清, 等. 2014. CMIP5模式对西太平洋副热带高压的模拟和预估[J]. 气象学报, 72 (2):277-290. doi: 10.11676/qxxb2014.025Liu Yunyun, Li Weijing, Zuo Jinqing, et al. 2014. Simulations and projections of the western Pacific subtropical high in CMIP5 models[J]. Acta Meteor. Sinica (in Chinese), 72 (2):277-290, doi: 10.11676/qxxb2014.025. [33] Ma J H, Wang H J, Fan K. 2014. Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4[J]. Adv. Atmos. Sci., 32 (5):577-584, doi: 10.1007/s00376-014-4143-y. [34] Murray R J. 1996. Explicit generation of orthogonal grids for ocean models[J]. J. Comput. Phys., 126 (2):251-273, doi: 10.1006/jcph.1996.0136. [35] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. J. Meteor. Soc. Japan Ser. II, 65 (3):373-390. http://cn.bing.com/academic/profile?id=8bd585f065085d033d65fce9bd3ac08e&encoded=0&v=paper_preview&mkt=zh-cn [36] Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate[J]. J. Climate, 15 (13):1609-1625, doi:10.1175/1520-0442(2002)015<:AIISAS>2.0.CO;2. [37] Saha S, Nadiga S, Thiaw C, et al. 2006. The NCEP climate forecast system[J]. J. Climate, 19 (15):3483-3517, doi: 10.1175/JCLI3812.1. [38] Saha S, Moorthi S, Wu X R, et al. 2014. The NCEP climate forecast system version 2[J]. J. Climate, 27 (6):2185-2208, doi: 10.1175/JCLI-D-12-00823.1. [39] Suchul K, Jina H, Joong B A. 2014. Statistical downscaling methods based on APCC multi-model ensemble for seasonal prediction over South Korea[J]. Int. J. Climatol., 34 (14):3801-3810, doi: 10.1002/joc.3952. [40] Sun J Q, Chen H P. 2012. A statistical downscaling scheme to improve global precipitation forecasting[J]. Meteor. Atmos. Phys., 117 (3-4):87-102, doi: 10.1007/s00703-012-0195-7. [41] Wang B, Yang H W. 2008. Hydrological issues in lateral boundary conditions for regional climate modeling:Simulation of East Asian summer monsoon in 1998[J]. Climate Dyn., 31 (4):477-490, doi: 10.1007/s00382-008-0385-7. [42] Wang B, Ding Q H, Fu X H, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall[J]. Geophys. Res. Lett., 32 (15):L15711, doi: 10.1029/2005GL022734. [43] 王会军. 1997. 试论短期气候预测的不确定性[J]. 气候与环境研究, 2 (4):333-338. doi: 10.3878/j.issn.1006-9585.1997.04.02Wang Huijun. 1997. A preliminary study on the uncertainty of short-term climate prediction[J]. Climatic and Environmental Research (in Chinese), 2 (4):333-338, doi:10.3878/j.issn. 1006-9585.1997.04.02. [44] 王会军, 孙建奇, 郎咸梅, 等. 2008. 几年来我国气候年际变异和短期气候预测研究的一些新成果[J]. 大气科学, 32 (4):806-814. doi: 10.3878/j.issn.1006-9895.2008.04.09Wang Huijun, Sun Jianqi, Lang Xianmei, et al. 2008. Some new results in the research of the interannual climate variability and short-term climate prediction[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (4):806-814, doi: 10.3878/j.issn.1006-9895.2008.04.09. [45] Wang H J, Fan K, Sun J Q, et al. 2015. A review of seasonal climate prediction research in China[J]. Adv. Atmos. Sci., 32 (2):149-168, doi: 10.1007/s00376-014-0016-7. [46] Weisheimer A, Doblas-Reyes F J, Palmer T N, et al. 2009. ENSEMBLES:A new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs[J]. Geophys. Res. Lett., 36 (21):L21711, doi: 10.1029/2009GL040896. [47] Wen M, Zhang R H. 2012. Impacts of model resolutions and initial conditions on predictions of the Asian summer monsoon by the NCEP climate forecast system[J]. Wea. Forecasting, 27 (3):629-646, doi: 10.1175/WAF-D-11-00128.1. [48] Winton M. 2000. A reformulated three-layer sea ice model[J]. J. Atmos. Oceanic Technol., 17 (4):525-531, doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2. [49] 吴国雄, 丑纪范, 刘屹岷, 等. 2002. 副热带高压形成和变异的动力学问题[M]. 北京:科学出版社.Wu Guoxiong, Chou Jifan, Liu Yimin, et al. 2002.Dynamics of the Formation and Variation of Subtropical Anticyclones (in Chinese)[M]. Beijing:Science Press. [50] Wu R G, Kirtman B P. 2005. Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability[J]. Climate Dyn., 25 (2-3):155-170, doi: 10.1007/s00382-005-0003-x. [51] 吴统文, 宋连春, 刘向文, 等. 2013. 国家气候中心短期气候预测模式系统业务化进展[J]. 应用气象学报, 24 (5):533-543. doi: 10.3969/j.issn.1001-7313.2013.05.003Wu Tongwen, Song Lianchun, Liu Xiangwen, et al. 2013. Progress in developing the short-range operational climate prediction system of China National Climate Center[J]. J. Appl. Meteor. Sci. (in Chinese), 24 (5):533-543, doi: 10.3969/j.issn.1001-7313.2013.05.003. [52] 吴统文, 宋连春, 李伟平, 等. 2014. 北京气候中心气候系统模式研发进展——在气候变化研究中的应用[J]. 气象学报, 72 (1):12-29. doi: 10.11676/qxxb2013.084Wu Tongwen, Song Lianchun, Li Weiping, et al. 2014. An overview on progress in Beijing Climate Center Climate System Model-Its development and application to climate change studies[J]. Acta Meteor. Sinica (in Chinese), 72 (1):12-29, doi: 10.11676/qxxb2013.084. [53] Wu T W, Yu R C, Zhang F, et al. 2010. The Beijing Climate Center atmospheric general circulation model:Description and its performance for the present-day climate[J]. Climate Dyn., 34 (1):123-147, doi: 10.1007/s00382-008-0487-2. [54] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmospheric and Oceanic Science Letter, 5 (6):489-494, doi:10.1080/16742834.2012. 11447041. [55] Yang S, Wen M, Yang R Q, et al. 2011. Impacts of land process on the onset and evolution of Asian summer monsoon in the NCEP climate forecast system[J]. Adv. Atmos. Sci., 28 (6):1301-1317, doi: 10.1007/s00376-011-0167-8. [56] 曾庆存, 袁重光, 王万秋, 等. 1990. 跨季度气候距平数值预测试验[J]. 大气科学, 14 (1):10-25. doi: 10.3878/j.issn.1006-9895.1990.01.03Zeng Qingcun, Yuan Chongguang, Wang Wanqiu, et al. 1990. Experiments in numerical extraseasonal prediction of climate anomalies[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 14 (1):10-25, doi: 10.3878/j.issn.1006-9895.1990.01.03. [57] Zeng Q C, Yuan C G, Li X, et al. 1997. Seasonal and extraseasonal predictions of summer monsoon precipitation by Gems[J]. Adv. Atmos. Sci., 14 (2):163-176, doi: 10.1007/s00376-997-0017-x. [58] 张凤, 陈红, 林朝晖, 等. 2004. IAP AGCM-Ι水平分辨率的提高及对全球和东亚区域气候的数值模拟[J]. 气候与环境研究, 9 (2):396-408. doi: 10.3878/j.issn.1006-9585.2004.02.16Zhang Feng, Chen Hong, Lin Zhaohui, et al. 2004. Improvement of horizontal resolutions of IAP AGCM-I and its influence on the simulations of global and East Asian climate[J]. Climatic and Environmental Research (in Chinese), 9 (2):396-408, doi:10.3878/j.issn. 1006-9585.2004.02.16. [59] 张培群, 李清泉, 王兰宁, 等. 2004. 我国动力气候模式预测系统的研制及应用[J]. 科技导报, 22 (7):17-20. doi: 10.3321/j.issn:1000-7857.2004.07.006Zhang Peiqun, Li Qingquan, Wang Lanning, et al. 2004. Development and application of dynamic climate model prediction system in China[J]. Science & Technology Review (in Chinese), 22 (7):17-20, doi:10.3321/j.issn:1000-7857.2004. 07.006. [60] 张庆云, 陶诗言. 1998. 亚洲中高纬度环流对东亚夏季降水的影响[J]. 气象学报, 56 (2):199-211. doi: 10.11676/qxxb1998.019Zhang Qingyun, Tao Shiyan. 1998. Influence of Asian mid-high latitude circulation on East Asian summer rainfall[J]. Acta Meteor. Sinica (in Chinese), 56 (2):199-211, doi: 10.11676/qxxb1998.019. [61] 张庆云, 吕俊梅, 杨莲梅, 等. 2007. 夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系[J]. 大气科学, 31 (6):1290-1300. doi: 10.3878/j.issn.1006-9895.2007.06.23Zhang Qingyun, Lü Junmei, Yang Lianmei, et al. 2007. The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extra-forcing factor[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (6):1290-1300, doi:10.3878/j.issn.1006-9895.2007.06. 23. [62] 赵彦, 李旭, 袁重光, 等. 1999.IAP短期气候距平预测系统的定量评估及订正技术的改进研究[J]. 气候与环境研究, 4 (4):353-364. doi: 10.3878/j.issn.1006-9585.1999.04.04Zhao Yan, Li Xu, Yuan Chongguang, et al. 1999. Quantitative assessment and improvement to correction technology on prediction system of short-term climate anomaly[J]. Climatic and Environmental Research (in Chinese), 4 (4):353-364, doi: 10.3878/j.issn.1006-9585.1999.04.04. [63] 赵振国. 1999. 中国夏季旱涝及环境场[M]. 北京:气象出版社, 297pp.Zhao Zhenguo. 1999. Drought and Flood in Summer of China and the Circulation Back Ground (in Chinese)[M]. Beijing:China Meteorological Press, 297pp. [64] Zheng F, Zhu J, Zhang R H, et al. 2006. Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model[J]. Geophys. Res. Lett., 33 (19):L19604, doi: 10.1029/2006GL026994. [65] Zhou G Q, Zeng Q C. 2001. Predictions of ENSO with a coupled atmosphere-ocean general circulation model[J]. Adv. Atmos. Sci., 18 (4):587-603, doi: 10.1007/s00376-001-0047-8. [66] Zhou G Q, Zeng Q C, Zhang R H. 1999. An improved coupled ocean-atmosphere general circulation model and its numerical simulation[J]. Prog. Nat. Sci., 9 (5):374-381. http://cn.bing.com/academic/profile?id=9267da6846db6155eaf59cfb6a6f558d&encoded=0&v=paper_preview&mkt=zh-cn [67] Zhu C W, Park C K, Lee W S, et al. 2008. Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field[J]. Adv. Atmos. Sci., 25 (5):867-884, doi: 10.1007/s00376-008-0867-x. -