高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盛夏青藏高原热源与菲律宾海对流活动的联系

谢志昂 段安民

谢志昂, 段安民. 盛夏青藏高原热源与菲律宾海对流活动的联系[J]. 大气科学, 2017, 41(4): 811-830. doi: 10.3878/j.issn.1006-9895.1611.16198
引用本文: 谢志昂, 段安民. 盛夏青藏高原热源与菲律宾海对流活动的联系[J]. 大气科学, 2017, 41(4): 811-830. doi: 10.3878/j.issn.1006-9895.1611.16198
Zhiang XIE, Anmin DUAN. Relationship between the Tibetan Plateau Heat Source and Convection over the Philippine Sea[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 811-830. doi: 10.3878/j.issn.1006-9895.1611.16198
Citation: Zhiang XIE, Anmin DUAN. Relationship between the Tibetan Plateau Heat Source and Convection over the Philippine Sea[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 811-830. doi: 10.3878/j.issn.1006-9895.1611.16198

盛夏青藏高原热源与菲律宾海对流活动的联系

doi: 10.3878/j.issn.1006-9895.1611.16198
基金项目: 

国家自然科学基金项目 91337216

详细信息
    作者简介:

    谢志昂, 男, 1991年出生, 硕士研究生, 主要从事气候动力与海气相互作用方面的研究。E-mail:xiezhiang@lasg.iap.ac.cn

    通讯作者:

    段安民, E-mail:anminduan@lasg.iap.ac.cn

  • 中图分类号: P461

Relationship between the Tibetan Plateau Heat Source and Convection over the Philippine Sea

Funds: 

National Natural Science Foundation of China 91337216

  • 摘要: 通过多源资料诊断分析,本文讨论了盛夏(8月)青藏高原大气热源与菲律宾海对流活动之间的联系及可能的机制。结果表明,与青藏高原热源相联系的环流形势在夏季各月明显不同,因此对夏季青藏高原热源的影响应当分月讨论。在夏季各月中,菲律宾海对流活动与青藏高原热源在8月份的联系最为紧密,二者存在显著的反相关关系。而8月青藏高原热源、菲律宾对流活动、西太平洋副热带高压(简称西太副高)、印度季风低压、南亚高压、西风带槽脊和西北太平洋季风环流存在相互耦合的过程。青藏高原热源与菲律宾海对流活动之间联系的机制为:菲律宾海对流弱(强)年,西太副高偏西(东)偏南(北),西北太平洋季风环流减弱(加强),印度季风低压减弱(加强),西风带南压(北抬),又加之副高西侧有强(弱)的水汽输入,兼以高层南亚高压加强(减弱),使得高原南部降水显著增强(减弱),高原热源整体加强(减弱),高原热源的加强(减弱)又造成了高原南部到东亚区域低层西南(东北)风异常,又利于西太副高偏西(东)偏南(北),从而造成菲律宾海对流减弱(加强)。这一机制在高原热源强弱年均有表现,但强年表现得更为显著,并在个例中也有所体现,说明盛夏青藏高原热源异常和菲律宾海对流异常存在显著的相互作用。
  • 图  1  夏季各个月份高原热源与500 hPa位势高度的相关系数场(等值线)及气候态位势高度分布(填色,单位:gpm):(a)6月;(b)7月;(c)8月;(d)夏季平均。打点区域表示通过95%信度检验的区域

    Figure  1.  Distributions of correlation coefficients (contours) between thermal forcing over Tibetan Plateau (TP-Q1) and geopotential height at 500 hPa (shaded, units: gpm) in (a) June, (b) July, (c) August, and (d) summer climatology. The dotted areas are for values that pass the significance test at the 95% confidence level

    图  2  8月(a)高原的热源指数(TP-Q1)和(b)菲律宾海对流指数(Phil-pre)各自定义区域上空物理量区域平均与其热源指数间的超前滞后相关关系演变图。为了表示8月的演变过程,各指数均做了6点平滑,横坐标括号内负数表示超前8月份(44~49候)热源的候数,正数表示滞后于8月份热源的候数,纵坐标各个物理量:Phil-Q1表示菲律宾海热源指数;Water Vapor和omega分别表示水汽通量散度和p坐标系垂直速度从地面到100 hPa的垂直积分;vu、temp分别为从地面至400 hPa经向风速、纬向风速和温度的垂直积分;pre表示表面气压;500H、200H分别表示500 hPa和200 hPa位势高度场

    Figure  2.  Lead–lag correlation coefficients between thermal forcing and the areal averages of several variables over the key region for the (a) TP-Q1 and (b) Phil-pre index definition (six-pentad running average). The x-axis: minus/plus denotes the thermal pentads (44–49 pentads) leading / lagging behind August. Variables shown in y-axis are: Phil-Q1 represents heat source index over key region around Phalipine sea; Water vapor/omega denote the vertical integration of divergence of water vapor flux/vertical velocity in the pressure coordinate from surface to 100 hPa; v, u, temp denote the integration of meridional wind velocity, zonal wind velocity, and temperature from surface to 400 hPa; pre denotes surface pressure. 500H/200H denote geopotential height at 500 hPa/200 hPa

    图  3  8月高原区域地面至100 hPa积分的大气视热源:(a)平均值(单位:W m-2);(b)方差(单位:W m-2);(c)EOF第一模态(解释方差62%);(d)其与高原热源指数相关系数分布。斜线区为所选高原南部区域

    Figure  3.  (a) Climatological mean (units: W m-2), (b) standard deviation (units: W m-2), (c) the leading mode of EOF (variance contribution of 62%) of integration of Q1 (Atmospheric apparent heat source; Yanai, 1973) from surface to 100 hPa over the Tibetan Plateau, and (d) the correlation coefficients between TP-Q1 and integration of Q1 from surface to 100 hPa over the Tibetan Plateau

    图  4  高原南部(25°N~35°N,85°E~105°E;海拔高于2000 m区域)东边界(蓝线)、西边界(绿线)、南边界(红线)及北边界(黑线)地面至100 hPa水汽总输送量(流入高原为正,单位: kg s-1)的逐候平均值演变,竖虚线表示44候与49候

    Figure  4.  The pentad evolution of vertically integrated water vapor transport from surface to 100 hPa on the eastern boundary (blue), western boundary (green), southern boundary (red), and northern boundary (black) of the southeastern Tibetan Plateau (25°N–35°N, 85°E–105°E; altitude above 2000 m). Units: kg s-1. The vertical dashed lines denote pentad 44 and pentad 49

    图  5  8月份高原热源与印度—西太平洋区域对流降水(填色)的相关系数场及气候态位势高度场(等值线)分布。红线表示用于定义菲律宾海对流指数Phil-pre的关键区边界

    Figure  5.  The correlation cofficients between the heat source over Tibetan Plateau and the convective precipitation over India-Western Pacific area and the distribution of geopotential height in climatology. The contours denote the geopotential height at 500 hPa. The red contour represents the boundary of key region.

    图  6  青藏高原热源强(左列)、弱(右列)年(a、b)850 hPa、(c、d)500 hPa和(e、f)200 hPa环流场合成图。其中黑色等值线为位势高度合成场[单位:gpm;绿色线条区域表示位势高度正(+),负(□)异常通过95%信度检验],850 hPa和500 hPa填色区域表示垂直运动异常(上升为负;单位:Pa s-1),200 hPa填色区表示纬向气流异常(向东为正;单位:m s-1),850 hPa和500 hPa风羽表示合成风场异常(单位:m s-1,只显示了通过95%信度检验的部分),200 hPa中流线表示合成风场

    Figure  6.  Composites of strong (left column) and weak (right column) heat source events over TP according to the 0.5 standard deviation of TP-Q1 at (a, b) 850 hPa, (c, d) 500 hPa and (e, f) 200 hPa. Black contours denote geopotential height (units: gpm, the green lines areas are for values passing the significance test at the 95% confidence level, '+'for positive anmomalies, '□' for negative anomalies). Shaded areas denote omega anomalies (units: Pa s-1) at 200 hPa and 500 hPa, and zonal wind anomalies (units: m s-1) at 200 hPa. Wind barbs denote the wind anomalies (units: m s-1, only those anomalies exceeding the 95% confidence level are shown). Streamlines denote composite winds at 200 hPa

    图  7  高原热源指数与(a)850 hPa、(b)500 hPa和(c)200 hPa位势高度场(黑色等值线)、温度场(红色等值线)、水平风场(矢量)及垂直速度(填色)的相关系数分布。图中只显示了通过95%信度检验的区域

    Figure  7.  Distributions of correlation coefficients between geopotential height (black contour) /temperature (red contour) /horizontal wind (vector) /vertical wind (shaded area) and TP-Q1 at (a) 850 hPa, (b) 500 hPa, and (c) 200 hPa respectively (only the values passing the significance test at the 95% confidence level are shown)

    图  8  图 7,但为偏相关系数。其中左列为高原热源指数去除菲律宾对流指数后的偏相关系数,右列为菲律宾对流指数去除高原热源指数后的偏相关系数

    Figure  8.  Same as Fig. 7, but for partial correlation coefficients. (a, c, e) show the partial correlation coefficients between TP-Q1 and circulation field without impact of the Phil-pre, (b, d, f) show those between Phil-pre and circulation field without impact of the TP-Q1

    图  9  (a)8月高原热源与菲律宾海对流相关贡献项在各年分布;(b)标准化的TP-Q1与Phil-pre散点分布,横轴表示Phil-pre指数,纵轴表示TP-Q1指数,红线表示一元线性回归的拟合线

    Figure  9.  (a) The distribution of CTR of correlation coefficients between TP-Q1 and Phil-pre in August during 1981–2013; (b) the scatter plot of normalized TP-Q1 index and normalized Phil-pre index. The red line denotes the fitting curve of linear regression of the scatter points

    图  10  气候平均态(a–f)44~49候500 hPa位势高度场(黑色实线,单位:gpm),u=0特征线(蓝色虚线)及整层积分的大气视热源(填色,单位:W m-2

    Figure  10.  Climatological-mean geopotential height (black contours, units: gpm), contours of u=0 (blue dash line), and vertical integration of Q1 (shaded, units: W m-2) at 500 hPa during (a–f) pentad 44 to pentad 49

    图  11  图 10,但为1998年。

    Figure  11.  Same as Fig. 10, but for 1998

    图  12  气候平均态(a–f)44~49候200 hPa流场(流线)和纬向风场(填色,单位: m s-1

    Figure  12.  Climatological means of streamline field (streamline), zonal wind velocity (shaded, units: m s-1) at 200 hPa during (a–f) pentad 44 to pentad 49

    图  13  图 12,但为1998年

    Figure  13.  Same as Fig. 12, but for 1998

    图  14  1998年标准化的TP-Q1(黑线)与标准化的Phil-Q1(红线)逐候演变图。竖虚线表示44候与49候。

    Figure  14.  The pentad evolution of normalized TP-Q1 (black curve) and normalized Phil-Q1 (red curve) in 1998. The vertical dashed lines denote pentad 44 and pentad 49

    表  1  标准化的高原热源指数与高原南部(25°N~35°N,85°E~105°E;海拔高于2000 m区域)四个边界处水汽流入量的回归系数(单位:kg s-1

    Table  1.   Coefficients of water vapor transport along the four boundaries of southeastern Tibetan Plateau (25°N– 35°N, 85°E–105°E; with attitude above 2000 m) regressed onto the normalized the Tibetan Plateau heat source index (TP-Q1)

    东边界 西边界 南边界 北边界
    回归系数/ kg s-1 -4.96×106 8.87×106★ 1.18×107★★ 1.35×106
    注:加表示通过95%信度检验,加★★表示通过99%信度检验
    下载: 导出CSV

    表  2  各年高原热源和菲律宾海热源8月前后位相转换的时间节点(通过95%信度滑动t检验)、相关系数贡献项CTR值以及超前因子。TP(Tibetan Plateau)起和TP止分别为高原热源指数位相突变的起止时间;Phil(Philippine Sea)起和Phil止分别为菲律宾海热源指数位相突变的起止时间;若在40~53候没有突变点,则取“/”;超前因子中,P代表菲律宾海热源超前于高原热源,T代表高原热源超前于菲律宾海热源,N表示没有明确先后顺序。有关起止时间均值/总计部分用均值表示,CTR在均值/总计部分用总计表示

    Table  2.   Points of time for phase transformation of TP-Q1 and Phil-Q1 (exceeding the 95% confidence level by slide t-test) around August, CTR values, and leading factors in special years. "TP start" and "TP end" are the times when TP-Q1 started to be into and out of the phase respectively. "Phil start" and "Phil end" are the times when Phil-Q1 started to be into and out of the phase respectively. The symbol '/' means there exists no abrupt point from pentad 40 to pentad 53. P, T, N represent Phil-Q1 leading TP-Q1, TP-Q1 leading Phil-Q1, and no significant change from pentad 40 to pentad 53, respectively. The Mean/Sum records in various fields are calculated using the mean values except "CTR" field, for which the sum is used

    年份 位相转换的时间(候) CTR 超前因子
    TP起 Phil起 TP止 Phil止
    1998 44 / 50 50 -0.163 P
    1988 / 43 / 53 -0.095 T
    1984 42 42 53 49 -0.095 N
    1997 / / 52 51 -0.069 N
    1990 43 44 / 53 -0.046 T
    1999 43 44 51 / -0.044 T
    1995 / / / / -0.035 N
    1987 / 40 / 51 -0.034 T
    1992 42 44 / 51 -0.021 T
    1986 / / / / -0.018 N
    均值/总计 42.8 42.8 51.5 51.1 -0.619 /
    下载: 导出CSV
  • [1] Boos W R, Kuang Z M. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463 (7278):218-222, doi: 10.1038/nature08707.
    [2] Boos W R, Kuang Z M. 2013. Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J]. Sci. Rep., 3:1192, doi: 10.1038/srep01192.
    [3] 段安民, 刘屹岷, 吴国雄. 2003. 4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学D辑:地球科学, 33 (10):997-1004.
    [4] Duan Anmin, Liu Yimin, Wu Guoxiong. 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer[J]. Sci. China Ser. D:Earth Sci., 48 (2):250-257, doi: 10.3321/j.issn:1006-9267.2003.10.011
    [5] Duan A M, Wu G X. 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dyn., 24 (7-8):793-807, doi: 10.1007/s00382-004-0488-8.
    [6] Duan A M, Sun R Z, He J H. 2016. Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high:A land-air-sea interaction perspective[J]. Adv. Atmos. Sci., 2016, doi: 10.1007/s00376-016-6008-z, in press
    [7] Ebita A, Kobayashi S, Ota Y, et al. 2011. The Japanese 55-year reanalysis "JRA-55":An interim report[J]. SOLA, 7:149-152, doi:10.2151/sola. 2011-038.
    [8] Flohn H. 1957. Large-scale aspects of the summer monsoon in South and East Asia[J]. J. Meteor. Soc. Japan, 75:180-186. http://www.oalib.com/references/19068973
    [9] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation[J]. Quart. J. Roy. Meteor. Soc., 106 (449):447-462, doi:10.1002/qj. 49710644905.
    [10] Hu J, Duan A M. 2015. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon[J]. Climate Dyn., 45 (9-10):2697-2711, doi: 10.1007/s00382-015-2503-7.
    [11] 黄荣辉, 孙凤英. 1994.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响[J].大气科学, 18 (2):141-151. doi: 10.3878/j.issn.1006-9895.1994.02.02

    Huang Ronghui, Sun Fengying. 1994. Impacts of the thermal state and the convective activities in the tropical western warm pool on the summer climate anomalies in East Asia[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18 (2):141-151, doi:10.3878/j.issn.1006-9895. 1994.02.02.
    [12] 黄荣辉, 徐予红, 王鹏飞, 等. 1998. 1998年夏长江流域特大洪涝特征及其成因探讨[J].气候与环境研究, 3 (4):300-313. doi: 10.3878/j.issn.1006-9585.1998.04.02

    Huang Ronghui, Xu Yuhong, Wang Pengfei, et al. 1998. The features of the catastrophic flood over the Changjiang River basin during the summer of 1998 and cause exploration[J]. Climatic and Environmental Research (in Chinese), 3 (4):300-313, doi: 10.3878/j.issn.1006-9585.1998.04.02.
    [13] Huang R H, Sun F Y. 1992. Impacts of the tropical western Pacific on the East Asian summer monsoon[J]. J. Meteorol. Soc. Japan, 70 (1B):243-256. doi: 10.2151/jmsj1965.70.1B_243
    [14] 简茂球, 罗会邦, 乔云亭. 2004.青藏高原东部和西太平洋暖池区大气热源与中国夏季降水的关系[J].热带气象学报, 20 (4):355-364. doi: 10.3969/j.issn.1004-4965.2004.04.003

    Jian Maoqiu, Luo Huibang, Qiao Yunting. 2004. On the relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool[J]. J. Trop. Meteor. (in Chinese), 20 (4):355-364, doi: 10.3969/j.issn.1004-4965.2004.04.003.
    [15] Jiang X W, Li Y Q, Yang S, et al. 2016. Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western maritime continent[J]. J. Climate, 29 (1):121-138, doi: 10.1175/JCLI-D-15-0181.1.
    [16] Kobayashi C, Iwasaki T. 2016. Brewer-dobson circulation diagnosed from JRA-55[J]. J. Geophys. Res. (Atmos.), 121 (4):1493-1510, doi: 10.1002/2015JD023476.
    [17] Kosaka Y, Nakamura H. 2006. Structure and dynamics of the summertime Pacific-Japan teleconnection pattern[J]. Quart. J. Roy. Meteor. Soc., 132 (619):2009-2030, doi: 10.1256/qj.05.204.
    [18] Kosaka Y, Nakamura H. 2010. Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part Ⅰ:The Pacific-Japan pattern[J]. J. Climate, 23 (19):5085-5108, doi: 10.1175/2010JCLI3413.1.
    [19] Li Tim, Liu P, Fu X, et al. 2006. Spatio-temporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions[J]. J. Climate, 19 (13):3070-3087, doi: 10.1175/JCLI3736.1.
    [20] Liu Y M, Bao Q, Duan A M, et al. 2007. Recent progress in the impact of the Tibetan Plateau on climate in China[J]. Adv. Atm. Sci., 24 (6):1060-1076, doi: 10.1007/s00376-007-1060-3.
    [21] 刘新, 李伟平, 吴国雄. 2002.夏季青藏高原加热和北半球环流年际变化的相关分析[J].气象学报, 60 (3):266-277. doi: 10.3321/j.issn:0577-6619.2002.03.002

    Liu Xin, Li Weiping, Wu Guoxiong. 2002. Interannual variation of the diabeatic heating over the Tibetan Plateau and the Northern Hemispheric circulation in summer[J]. Acta Meteor. Sinica (in Chinese), 60 (3):266-277, doi: 10.3321/j.issn:0577-6619.2002.03.002.
    [22] 刘屹岷, 吴国雄. 2000.副热带高压研究回顾及对几个基本问题的再认识[J].气象学报, 58 (4):500-512. doi: 10.11676/qxxb2000.053

    Liu Yiming, Wu Guoxiong. 2000. Reviews on the study of the subtropical anticyclone and new insights on some fundamental problems[J]. Acta Meteor. Sinica (in Chinese), 58 (4):500-512, doi: 10.11676/qxxb2000.053.
    [23] 刘屹岷, 吴国雄, 宇如聪, 等. 2001.热力适应、过流、频散和副高Ⅱ.水平非均匀加热与能量频散[J].大气科学, 25 (3):317-328. doi: 10.3878/j.issn.1006-9895.2001.03.03

    Liu Yiming, Wu Guoxiong, Yu Ruocong, et al. 2001. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone. Part Ⅱ:Horizontal inhomogeneous heating and energy dispersion[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (3):317-328, doi:10.3878/j.issn. 1006-9895.2001.03.03.
    [24] Lu R Y, Li Y, Chan S R. 2008. Relationship between the zonal displacement of the western Pacific subtropical high and the dominant modes of low-tropospheric circulation in summer[J]. Progr. Nat. Sci., 18 (2):161-165, doi: 10.1016/j.pnsc.2007.07.009.
    [25] 陆维松, 陶丽. 1996.南边界强迫的非线性临界层与副高的形成、维持和振荡[J].气象学报, 54 (6):651-660. doi: 10.11676/qxxb1996.068

    Lu Weisong, Tao Li. 1996. Nonlinear critical layer forced by southern boundary and generation, maintaining and oscillation of subtropical high[J]. Acta Meteor. Sinica (in Chinese), 54 (6):651-660, doi: 10.11676/qxxb1996.068.
    [26] Luo H B, Yanai M. 1983. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅰ:Precipitation and kinematic analyses[J]. Mon. Wea. Rev., 111 (5):922-944, doi:10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.
    [27] Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and moisture budgets[J]. Mon. Wea. Rev., 112 (5):966-989, doi:10.1175/1520-0493(1984)112 < 0966:TLSCAH>2.0.CO; 2.
    [28] Matsuno T. 1966. Quasi-geostrophic motions in the equatorial area[J]. J. Meteor. Soc. Japan, 44 (1):25-43 doi: 10.2151/jmsj1965.44.1_25
    [29] 孟文, 吴国雄. 2000.赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件Ⅱ.数值模拟[J].大气科学, 24 (1):15-25. doi: 10.3878/j.issn.1006-9895.1998.04.09

    Meng Wen, Wu Guoxiong. 2000. Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO. Part Ⅱ:Numerical simulation[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (1):15-25, doi: 10.3878/j.issn.1006-9895.1998.04.09.
    [30] Nitta T. 1986. Long-term variations of cloud amount in the western Pacific region[J]. J. Meteor. Soc. Japan, 64 (3):373-390. doi: 10.2151/jmsj1965.64.3_373
    [31] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. J. Meteor. Soc., Japan, 65:373-390. doi: 10.2151/jmsj1965.65.3_373
    [32] 任荣彩, 吴国雄. 2003. 1998年夏季副热带高压的短期结构特征及形成机制[J].气象学报, 62 (2):180-195. doi: 10.11676/qxxb2003.017

    Ren Rongcai, Wu Guoxiong. 2003. On the short-term structure and formation of the subtropical anticyclone in the summer of 1998[J]. Acta Meteor. Sinica (in Chinese), 65 (2):180-195, doi: 10.11676/qxxb2003.017.
    [33] Si D, Ding Y H. 2012. The tropospheric biennial oscillation in the East Asian monsoon region and its influence on the precipitation in China and large-scale atmospheric circulation in East Asia[J]. Int. J. Climatol., 32 (11):1697-1716, doi: 10.1002/joc.2386.
    [34] Simmons A J, Jones P D, Da Costa Bechtold V, et al. 2004. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature[J]. J. Geophys. Res., 109 (D24):89-92, doi: 10.1029/2004JD005306.
    [35] Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection:How does ENSO affect East Asian climate?[J]. J. Climate, 13 (9):1517-1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO; 2.
    [36] Wang B, Wu R G, Lau K M. 2001. Interannual variability of the Asian summer monsoon:Contrasts between the Indian and the western North Pacific-East Asian monsoons[J]. J. Climate, 14 (20):4073-4090, doi:10.1175/1520-0442(2001)014 < 4073:IVOTAS>2.0.CO; 2.
    [37] Wu Guoxiong, Liu Yimin, Zhang Qiong, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. J. Hydrometeorol., 8 (4):770-789, doi: 10.1175/JHM609.1.
    [38] Wu Guoxiong, Liu Yimin, He Bian, et al. 2012. Thermal controls on the Asian summer monsoon[J]. Sci. Rep., 2:404, doi: 10.1038/srep00404.
    [39] Wu Guoxiong, Duan Anmin, Liu Yimin, et al. 2015. Tibetan Plateau climate dynamics:Recent research progress and outlook[J]. Nat. Sci. Rev., 2 (1):100-116, doi: 10.1093/nsr/nwu045.
    [40] 吴国雄, 孟文. 1998.赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件Ⅰ.资料分析[J].大气科学, 22 (4):470-480. doi: 10.3878/j.issn.1006-9895.1998.04.09

    Wu Guoxiong, Meng Wen. 1998. Gearing between the Indo-monsoon circulation and Pacific-Walker circulation and the ENSO. Part Ⅰ:Data analysis[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22 (4):470-480, doi: 10.3878/j.issn.1006-9895.1998.04.09.
    [41] 吴国雄, 刘屹岷, 刘平. 1999.空间非均匀加热对副热带高压带形成和变异的影响Ⅰ:尺度分析[J].气象学报, 57 (3):257-263. doi: 10.11676/qxxb1999.025

    Wu Guoxiong, Liu Yimin, Liu Ping. 1999. The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part Ⅰ:Scale analysis[J]. Acta Meteor. Sinica (in Chinese), 57 (3):257-263, doi: 10.11676/qxxb1999.025.
    [42] 吴国雄, 刘屹岷. 2000.热力适应、过流、频散和副高Ⅰ.热力适应和过流[J].大气科学, 24 (4):433-446. doi: 10.3878/j.issn.1006-9895.2000.04.01

    Wu Guoxiong, Liu Yimin. 2000. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone. Part Ⅰ:Thermal adaptation and overshooting[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2000, 24 (4):433-446, doi: 10.3878/j.issn.1006-9895.2000.04.01.
    [43] Xie S P, Kosaka Y, Du Y, et al. 2016. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer:A review[J]. Adv. Atmos. Sci., 33 (4):411-432, doi: 10.1007/s00376-015-5192-6.
    [44] 徐国强, 朱乾根, 白虎志. 2003. 1998年青藏高原降水特征及大气LFO对长江流域低频降水的影响[J].气象科学, 23 (3):282-291. doi: 10.3969/j.issn.1009-0827.2003.03.004

    Xu Guoqiang, Zhu Qiangen, Bai Huzhi. 2003. Rain fall features of the Tibetan Plateau and LFO influence on low frequency precipitation in the Yangtze River basin[J]. Sci. Meteor. Sinica (in Chinese), 2003, 23 (3):283-291, doi: 10.3969/j.issn.1009-0827.2003.03.004.
    [45] Yanai M. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J. Atmos. Sci., 30 (4):611-627, doi:10.1175/1520-0469(1973)030 < 0611:DOBPOT>2.0.CO; 2.
    [46] Yang J L, Liu Q Y, Xie S P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophys. Res. Lett., 34 (2):155-164, doi: 10.1029/2006GL028571.
    [47] 叶笃正, 罗四维, 朱抱真. 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28 (2):108-121. doi: 10.11676/qxxb1957.010

    Ye Duzheng, Luo Siwei, Zhu Baozhen. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteor. Sinica (in Chinese), 28 (2):108-121, doi:10.11676/qxxb1957. 010.
    [48] 庄世宇, 赵声蓉, 姚明明. 2005. 1998年夏季西太平洋副热带高压的变异分析[J].应用气象学报, 16 (2):181-192. doi: 10.3969/j.issn.1001-7313.2005.02.007

    Zhuang Shiyu, Zhao Shengrong, Yao Mingming. 2005. Researches on anomalous characteristics of the subtropical high over the western Pacific during 1998 summertime[J]. J. Appl. Meteor. Sci. (in Chinese), 16 (2):181-192, doi: 10.3969/j.issn.1001-7313.2005.02.007.
    [49] 缪锦海, 丁敏芳. 1985.热力强迫下大气平衡态的突变与季节变化、副高北跳[J].中国科学(B辑), 15 (1):87-96. doi: 10.1360/zb1985-15-1-87

    Miao Jinhai, Ding Minfang. 1985. Thermal forced atmospheric equilibrium abrupt, seasonal variability, and northward movement of subtropical high[J]. Sci. China (Ser. B) (in Chinese), 15 (1):87-96, doi: 10.1360/zb1985-15-1-87.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1725
  • HTML全文浏览量:  4
  • PDF下载量:  1599
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-18
  • 网络出版日期:  2016-11-29
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回