高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP5模式对EU、WP遥相关型的模拟评估和预估

卢国阳 任保华 马鹏里 郑建秋

卢国阳, 任保华, 马鹏里, 郑建秋. CMIP5模式对EU、WP遥相关型的模拟评估和预估[J]. 大气科学, 2017, 41(4): 752-766. doi: 10.3878/j.issn.1006-9895.1701.16219
引用本文: 卢国阳, 任保华, 马鹏里, 郑建秋. CMIP5模式对EU、WP遥相关型的模拟评估和预估[J]. 大气科学, 2017, 41(4): 752-766. doi: 10.3878/j.issn.1006-9895.1701.16219
Guoyang LU, Baohua REN, Pengli MA, Jianqiu ZHENG. Evaluation and Estimation of Eurasian and West Pacific Teleconnection Pattern in CMIP5[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 752-766. doi: 10.3878/j.issn.1006-9895.1701.16219
Citation: Guoyang LU, Baohua REN, Pengli MA, Jianqiu ZHENG. Evaluation and Estimation of Eurasian and West Pacific Teleconnection Pattern in CMIP5[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 752-766. doi: 10.3878/j.issn.1006-9895.1701.16219

CMIP5模式对EU、WP遥相关型的模拟评估和预估

doi: 10.3878/j.issn.1006-9895.1701.16219
基金项目: 

国家自然科学基金项目 41675066

详细信息
    作者简介:

    卢国阳, 男, 1991年出生, 硕士, 助理工程师, 主要从事气候预测研究。E-mail:lugy@mail.ustc.edu.cn

    通讯作者:

    任保华, E-mail:ren@ustc.edu.cn

  • 中图分类号: P467

Evaluation and Estimation of Eurasian and West Pacific Teleconnection Pattern in CMIP5

Funds: 

National Natural Science Foundation of China 41675066

  • 摘要: 基于国际第5次耦合模式比较计划(CMIP5)历史试验输出资料和情景模拟试验结果,评估了14个耦合模式对北半球冬季影响东亚冬季气候的遥相关型——欧亚型(EU)和西太平洋型(WP)的模拟能力以及其对局地气温、降水影响的模拟效果,并预估未来EU和WP变化。结果表明:(1)模式对EU、WP信号的整体年际变率有一定模拟技巧,对空间模态特征的模拟能较好再现遥相关的异常中心,但也存在一定的位置偏差。(2)模式和多模式集合能再现EU与东亚以及西北太平洋地区表面气温的负相关性,但对我国华北以及黄淮流域降水负相关性模拟能力较差,且低估EU与东亚地区气温、降水的关系。(3)各模式对WP与东亚—西太平洋区相关性的南负北正分布均有较好模拟能力,空间相关系数为0.5~0.9;多数模式能再现WP与降水在鄂霍次克海的正相关性,但对于我国大陆至西太平洋的负相关性模拟能力较弱,且各模式对WP和东亚地区表面气温关系的模拟优于其与降水的关系。(4)对EU、WP遥相关整体模拟能力S评分可知,CSIRO-Mk3.6.0对EU整体评估能力最强,CNRM-CM5对WP综合评估能力最好;而HadCM3整体评分较低。(5)RCP4.5情景下,EU和WP在未来略趋于负位相发展;EU与东亚气温相关范围向东南移动,与降水相关不显著;WP与气温相关范围高纬西撤、低纬东移,与降水相关显著增强。
  • 图  1  观测和15个模式资料的北半球欧亚地区冬季500 hPa位势高度距平场EOF分解所得EU型分布

    Figure  1.  Spatial patterns of EU based on EOF analysis of the H500 (500-hPa geopotential height) anomalies from observations (lower right corner) and simulations of 15 GCMs

    图  2  Intermodel-EOF分解EU型(a, b)前两个空间模态以及(c, d)PC(模态对应的时间系数)序列

    Figure  2.  (a) The first and (b) second Intermodel-EOF modes of EU pattern simulated by 14 GCMs; (c, d) corresponding two PCs (Principal Components)

    图  3  观测和15个模式资料的冬季500 hPa位势高度距平场EOF分解所得WP型分布

    Figure  3.  Spatial patterns of WP based on EOF analysis of the H500 anomalies from observations (lower right corner) and simulations of 15 GCMs

    图  4  图 2,但为Intermodel-EOF分解WP型

    Figure  4.  Same as Fig. 2, but for Intermodel-EOF modes of WP pattern

    图  5  观测和模式资料中EU模态对应的PC序列与冬季东亚地区地表气温相关系数分布(等值线间隔为0.2,粗实线为零线,虚线为负值;浅、深黄(蓝)阴影区为通过95%、99%信度检验)

    Figure  5.  Observed and GCMs simulated correlation coefficients between the PC that corresponds to EU mode and regional winter surface temperature over East Asia-the West Pacific. (Contour interval is 0.2. The thick solid lines indicate the zero contour and the dashed lines indicate negative values. The light and dark yellow (blue) shadings are for values that exceed the 95% and 99% confidence levels, respectively)

    图  6  图 5,但为PC序列与冬季东亚地区降水量相关系数分布

    Figure  6.  Same as Fig. 5, but for correlations between the PC and regional winter precipitation

    图  9  模式模拟(a)EU、(b)WP指数与局地表面气温(SAT,红圈)、降水量(Precip,蓝三角)相关性和观测资料的泰勒图(简言之,离REF点的距离越近,说明该模式模拟能力越佳)

    Figure  9.  Taylor diagrams of the relationships of (a) EU and (b) WP indexes with regional surface air temperature (SAT, red circles) and precipitation (Precip, blue triangles)

    图  7  图 5,但为WP指数与冬季东亚地区地表气温相关系数分布

    Figure  7.  Same as Fig. 5, but for correlations between the WP index and regional winter surface temperature

    图  8  图 5,但为WP指数与冬季东亚地区降水量相关系数分布

    Figure  8.  Same as Fig. 5, but for correlations between the WP index and regional winter precipitation

    图  10  各模式对EU、WP遥相关整体模拟能力评分

    Figure  10.  The skill scores of each model for overall simulation capability of EU and WP

    图  11  RCP4.5情景下未来标准化EU、WP指数的时间变化(蓝色实线为9年滑动平均,红色虚线为线性趋势线)

    Figure  11.  The future changes in normalized EU and WP indexes under the RCP4.5 scenario (the blue solid line shows the 9-year running mean, the red dashed line indicates the linear trend)

    图  12  RCP4.5情景下CSIRO-Mk3.6.0模式中EU指数与冬季东亚地区(a)气温和(b)降水量的相关分布图(等值线间隔为0.1,粗实线为零线,实线为正,虚线为负,浅、深黄(蓝)阴影表示通过95%、99%信度检验)

    Figure  12.  CSIRO-Mk3.6.0 simulated correlation coefficients between EU index and (a) regional winter air temperature, (b) winter precipitation over East Asia-the West Pacific (contour interval is 0.1. The thick solid lines indicate the zero contour, the solid lines and dashed lines indicate positive and negative values, respectively. The light and dark yellow (blue) shadings are for values that exceed the 95% and 99% confidence levels, respectively)

    图  13  图 12,但为CNRM-CM5模式中WP指数与冬季东亚(a)气温与(b)降水量相关

    Figure  13.  Same as Fig. 12, but for the CNRM-CM5 simulated correlation between WP index and regional winter air temperature and precipitation

    表  1  CMIP5中14个模式来源以及分辨率简介

    Table  1.   CMIP5 models used in this study, including their acronyms, host institutions, and spatial resolution.

    模式所属机构 分辨率(纬度×经度)
    BCC-CSM1.1北京气候中心—中国气象局(中国) 2.81°×2.81°
    CanESM2加拿大气候模拟与分析中心(加拿大) 2.81°×2.79°
    CCSM4美国国家大气研究中心(美国) 1.25°×0.95°
    CNRM-CM5法国气象局气象研究中心(法国) 1.41°×1.40°
    CSIRO-Mk3.6.0 澳大利亚联邦科学与工业研究和昆士兰州气候变化研究中心(澳大利亚) 1.875°×1.85°
    FGOALS-s2中国科学院大气物理研究所(中国) 2.81°×1.41°
    GFDL-CM3美国地球物理流体动力学实验室(美国) 2.5°×2.0°
    GISS-E2-R美国航空和航天局(美国) 2.5°×2.0°
    HadCM3哈德来气候预测和研究中心(英国) 3.75°×2.5°
    INM-CM4俄罗斯数值数学研究院(俄罗斯) 2.0°×1.5°
    IPSL-CM5A-LR皮埃尔—西蒙·拉普拉斯研究所(法国) 3.75°×1.89°
    MIROC5日本气候系统研究中心(日本) 1.41°×1.40°
    MRI-CGCM3日本气象研究所(日本) 1.13°×1.12°
    NorESM1-M挪威气候中心(挪威) 2.50°×1.89°
    下载: 导出CSV

    表  2  CMIP5各模式遥相关指数与NCEP资料指数的相关系数及均方差

    Table  2.   Correlation coefficients of EU and WP indexes between CMIP5 simulations and NCEP observations, and the mean square deviations

    模式 EU指数 WP指数
    相关系数 均方差 相关系数 均方差
    1BCC-CSM1.1 0.13 0.71 -0.06 0.81
    2CanESM2 -0.25 0.67 -0.04 0.75
    3CCSM4 0.03 0.73 -0.09 0.71
    4CNRM-CM5 -0.05 0.78 -0.05 0.83
    5CSIRO-Mk3.6.0 0.02 0.72 0.16 0.68
    6FGOALS-s2 -0.16 0.71 -0.03 0.68
    7GFDL-CM3 -0.15 0.74 0.03 0.72
    8GISS-E2-R -0.06 0.86 -0.06 0.71
    9HadCM3 -0.05 0.80 0.15 0.78
    10INM-CM4 0.12 0.77 0.03 0.88
    11IPSL-CM5A-LR -0.09 0.72 -0.03 0.75
    12MIROC5 0.03 0.74 0.14 0.76
    13MRI-CGCM3 0.11 0.66 0.05 0.72
    14NorESM1-M -0.30 0.74 -0.10 0.85
    15MME -0.19 0.68 -0.02 0.69
    下载: 导出CSV

    表  3  CMIP5各模式与NCEP再分析资料遥相关型的空间相关系数

    Table  3.   Spatial correlation coefficients of EU and WP modes between CMIP5 models and NCEP data

    模式 EU型(再分析资料EOF2) WP型(再分析资料EOF1)
    模态相关系数 模态 相关系数
    1BCC-CSM1.1 EOF4 0.57 EOF1 0.83
    2CanESM2 EOF3 0.70 EOF1 0.79
    3CCSM4 EOF3 0.69 EOF1 0.81
    4CNRM-CM5 EOF1 0.62 EOF1 0.88
    5CSIRO-Mk3.6.0 EOF3 0.81 EOF1 0.83
    6FGOALS-s2 EOF2 0.50 EOF1 0.79
    7GFDL-CM3 EOF3 0.54 EOF1 0.73
    8GISS-E2-R EOF1 0.74 EOF1 0.66
    9HadCM3 EOF2 0.79 EOF1 0.59
    10INM-CM4 EOF2 0.81 EOF1 0.91
    11IPSL-CM5A-LR EOF4 0.64 EOF1 0.86
    12MIROC5 EOF2 0.47 EOF2 0.83
    13MRI-CGCM3 EOF3 0.78 EOF3 0.82
    14NorESM1-M EOF2 0.67 EOF1 0.65
    15MME EOF2 0.75 EOF1 0.86
    下载: 导出CSV
  • [1] 陈红. 2014.CMIP5气候模式对中国东部夏季降水年代际变化的模拟性能评估[J].气候与环境研究, 19 (6):773-786. doi: 10.3878/j.issn.1006-9585.2014.13174

    Chen Hong. 2014. Validation of the CMIP5 climate models in simulating decadal variations of summer rainfall in eastern China[J]. Climatic and Environmental Research (in Chinese), 19 (6):773-786, doi:10.3878/j.issn.1006-9585. 2014.13174.
    [2] 胡芩, 姜大膀, 范广洲. 2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38 (5):924-938. doi: 10.3878/j.issn.1006-9895.2013.13197

    Hu Qin, Jiang Dabang, Fan Guangzhou. 2014. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (5):924-938, doi: 10.3878/j.issn.1006-9895.2013.13197.
    [3] 黄海玲, 江志红, 王志福, 等. 2015.CMIP5模式对东亚500 hPa高度场主要模态时空结构模拟能力的评估[J].气象学报, 73 (1):110-127. doi: 10.11676/qxxb2014.065

    Huang Hailing, Jiang Zhihong, Wang Zhifu, et al. 2015. The evaluation of the 500 hPa geopotential height's main modes in East Asia as done by the CMIP5 models[J]. Acta Meteorologica Sinica, 73 (1):110-127, doi: 10.11676/qxxb2014.065.
    [4] 姜大膀, 田芝平. 2013. 21世纪东亚季风变化:CMIP3和CMIP5模式预估结果[J].科学通报, 58 (8):707-716. doi: 10.1007/S11434-012-5533-0

    Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century:Results of CMIP3 and CMIP5 models[J]. Chinese Science Bulletin, 58 (12):1427-1435, doi: 10.1007/S11434-012-5533-0.
    [5] 金晨曦, 周天军. 2014.参加CMIP5的四个中国气候模式模拟的东亚冬季风年际变率[J].大气科学, 38 (3):453-468. doi: 10.3878/j.issn.1006-9895.2013.13180

    Jin Chenxi, Zhou Tianjun. 2014. Analysis of the interannual variations of the East Asian winter monsoon simulation by four CMIP5 GCMs[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3):453-468, doi:10.3878/j.issn. 1006-9895.2013.13180.
    [6] Li G, Xie S P. 2012. Origins of tropical-wide SST biases in CMIP multi-model ensembles[J]. Geophys. Res. Lett., 39 (22):L22703, doi: 10.1029/2012GL053777.
    [7] Li G, Xie S P. 2014. Tropical biases in CMIP5 multi-model ensemble:The excessive equatorial Pacific cold tongue and double ITCZ problems[J]. J. Climate, 27 (4):1765-1780, doi: 10.1175/JCLI-D-13-00337.1.
    [8] 李维京, 丑纪范. 1990.北半球月平均环流与长江中下游降水的关系[J].气象科学, 10 (2):139-146. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199002003.htm

    Li Weijing, Chou Jifan. 1990. Relation between monthly mean circulation in the Northern Hemisphere and the summer precipitation in the middle and lower reaches of Changjiang River[J]. Scientia Meteorologica Sinica (in Chinese), 10 (2):139-146. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199002003.htm
    [9] 李勇. 2006. 西太平洋遥相关型的环流结构特征及其与我国冬季气候的关系[D]. 南京信息工程大学硕士学位论文.

    Li Yong. 2006.Circulation structure features of western Pacific teleconnection pattern and their relation with China's climate in winter[D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology.
    [10] 李勇, 何金海, 姜爱军, 等. 2007.冬季西太平洋遥相关型的环流结构特征及其与我国冬季气温和降水的关系[J].气象科学, 27 (2):119-125. doi: 10.3969/j.issn.1009-0827.2007.02.001

    Li Yong, He Jinhai, Jiang Aijun, et al. 2007. Circulation structure features of western Pacific teleconnection pattern in winter and their relation with China's temperature and precipitation in winter[J]. Scientia Meteorologica Sinica (in Chinese), 27 (2):119-125, doi:10.3969/j.issn. 1009-0827.2007.02.001.
    [11] 刘毓赟, 陈文. 2012.北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J].大气科学, 36 (2):423-432. doi: 10.3878/j.issn.1006-9895.2011.11066

    Liu Yuyun, Chen Wen. 2012. Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):423-432, doi: 10.3878/j.issn.1006-9895.2011.11066.
    [12] Ning L, Bradley R S. 2016. NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs[J]. Climate Dyn., 46 (3):1257-1276, doi: 10.1007/s00382-015-2643-9.
    [13] 施能. 1996.北半球冬季大气环流遥相关的长期变化及其与我国气候变化的关系[J].气象学报, 54 (6):675-683. doi: 10.11676/qxxb1996.070

    Shi Neng. 1996. Secular variation of winter atmospheric teleconnection pattern in the Northern Hemisphere and its relation with China's climate change[J]. Acta Meteorologica Sinica, 54 (6):675-683, doi: 10.11676/qxxb1996.070.
    [14] 陶纯苇, 姜超, 孙建新. 2016.CMIP5模式对中国东北气候模拟能力的评估[J].气候与环境研究, 21 (3):357-366. doi: 10.3969/j.issn.1673-503X.2010.03.001

    Tao Chunwei, Jiang Chao, Sun Jianxin. 2016. Evaluation of CMIP5 models performance on climate simulation in Northeast China[J]. Climatic and Environmental Research (in Chinese), 21 (3):357-366, doi: 10.3969/j.issn.1673-503X.2010.03.001.
    [15] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram[J]. J. Geophys. Res., 106 (D7):7183-7192, doi: 10.1029/2000JD900719.
    [16] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design[J]. Bull. Amer. Meteor. Soc., 93 (4):485-498, doi: 10.1175/BAMS-D-11-00094.1.
    [17] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter[J]. Mon. Wea. Rev., 109 (4):784-812, doi:10.1175/1520-0493(1981)109 < 0784:TITGHF > 2.0.CO; 2.
    [18] 吴洪宝. 1993.我国冬季气温异常与北半球500 hPa大气环流遥相关型的关系[J].南京气象学院学报, 16 (2):115-119. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199302000.htm

    Wu Hongbao. 1993. Relationships between winter temperature anomalies in China and 500-hPa teleconnection patterns of the atmospheric circulation in the Northern Hemisphere[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 16 (2):115-119. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199302000.htm
    [19] 吴蔚, 穆海振, 梁卓然, 等. 2016.CMIP5全球气候模式对上海极端气温和降水的情景预估[J].气候与环境研究, 21 (3):269-281. doi: 10.3878/j.issn.1006-9585.2016.14225

    Wu Wei, Mu Haizhen, Liang Zhuoran, et al. 2016. Projected changes in extreme temperature and precipitation events in Shanghai based on CMIP5 simulations[J]. Climatic and Environmental Research (in Chinese), 21 (3):269-281, doi: 10.3878/j.issn.1006-9585.2016.14225.
    [20] 徐经纬, 徐敏, 蒋熹, 等. 2016.区域气候模式REMO对中国气温和降水模拟能力的评估[J].气候变化研究进展, 12 (4):286-293. doi: 10.12006/j.issn.1673-1719.2015.194

    Xu Jingwei, Xu Min, Jiang Xi, et al. 2016. The assessment of surface air temperature and precipitation simulated by regional climate model REMO over China[J]. Climate Change Research (in Chinese), 12 (4):286-293, doi: 10.12006/j.issn.1673-1719.2015.194.
    [21] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmos. Oceanic Sci. Lett., 5 (6):489-494, doi: 10.1080/16742834.2012.11447041.
    [22] 张蓓, 戴新刚. 2016. 2006~2013年CMIP5模式中国降水预估误差分析[J].大气科学, 40 (5):981-994. doi: 10.3878/j.issn.1006-9895.1511.15212

    Zhang Bei, Dai Xin'gang. 2016. Assessment of the deviation of China precipitation projected by CMIP5 models for 2006-2013[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (5):981-994, doi: 10.3878/j.issn.1006-9895.1511.15212.
    [23] 张芳, 董敏, 吴统文. 2014.CMIP5模式对ENSO现象的模拟能力评估[J].气象学报, 72 (1):30-48. doi: 10.11676/qxxb2014.011

    Zhang Fang, Dong Min, Wu Tongwen. 2014. Evaluation of the ENSO features simulations as done by the CMIP5 models[J]. Acta Meteorologica Sinica, 72 (1):30-48, doi: 10.11676/qxxb2014.011.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1631
  • HTML全文浏览量:  0
  • PDF下载量:  1403
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 网络出版日期:  2017-03-08
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回