Evaluation and Estimation of Eurasian and West Pacific Teleconnection Pattern in CMIP5
-
摘要: 基于国际第5次耦合模式比较计划(CMIP5)历史试验输出资料和情景模拟试验结果,评估了14个耦合模式对北半球冬季影响东亚冬季气候的遥相关型——欧亚型(EU)和西太平洋型(WP)的模拟能力以及其对局地气温、降水影响的模拟效果,并预估未来EU和WP变化。结果表明:(1)模式对EU、WP信号的整体年际变率有一定模拟技巧,对空间模态特征的模拟能较好再现遥相关的异常中心,但也存在一定的位置偏差。(2)模式和多模式集合能再现EU与东亚以及西北太平洋地区表面气温的负相关性,但对我国华北以及黄淮流域降水负相关性模拟能力较差,且低估EU与东亚地区气温、降水的关系。(3)各模式对WP与东亚—西太平洋区相关性的南负北正分布均有较好模拟能力,空间相关系数为0.5~0.9;多数模式能再现WP与降水在鄂霍次克海的正相关性,但对于我国大陆至西太平洋的负相关性模拟能力较弱,且各模式对WP和东亚地区表面气温关系的模拟优于其与降水的关系。(4)对EU、WP遥相关整体模拟能力S评分可知,CSIRO-Mk3.6.0对EU整体评估能力最强,CNRM-CM5对WP综合评估能力最好;而HadCM3整体评分较低。(5)RCP4.5情景下,EU和WP在未来略趋于负位相发展;EU与东亚气温相关范围向东南移动,与降水相关不显著;WP与气温相关范围高纬西撤、低纬东移,与降水相关显著增强。Abstract: The historical and future relationships between Eurasian (EU) and West Pacific (WP) teleconnection patterns, and regional winter temperature and precipitation in East Asia are evaluated by using 14 general circulation models from the Coupled Model Intercomparison Project phase 5. The main conclusions are as follows:(1) Most of the models in CMIP5 have a good ability in simulating the interannual variabilities and spatial patterns of EU and WP, but there still exist certain deviations in the simulated positions of EU and WP. (2) Some of these models could reproduce the negative correlativity between EU and East Asia and Northwest Pacific surface air temperature, but their skill in simulating the relationship between EU and precipitation in North China and Huang-Huai valley was poor. Meanwhile, all of models underestimated the relationship between EU and temperature and precipitation in East Asia. (3) Each individual model and multi-model ensemble mean both showed a high capability in simulating the relationship between WP and temperature in East Asia-Western Pacific region. The positive correlation between WP and precipitation in Northeast Asia and the Okhotsk Sea could be well reproduced; however, their capability for the simulation of the negative correlation from mainland China to western Pacific was poor. It is found that all the models could better simulate the relationship between WP and temperature compared to the simulation of relationship between WP and precipitation. (4) In terms of simulation ability score, CSIRO-Mk3.6.0 on the EU simulation is the strongest and CNRM-CM5 on WP is the best. HadCM3 has the worst model skill scores. (5) Under the RCP4.5 scenario, EU and WP in the future tend to be slightly more in negative phase. Significantly correlated area between EU and temperature in East Asia would shift southeastward based on CSIRO-Mk3.6.0 simulation, while the correlation between EU and precipitation would be insignificant. The correlated area between WP and temperature would shift westward in the high latitudes and eastward in the low latitudes, and the correlation between WP and precipitation would become stronger according to CNRM-CM5 simulation.
-
Key words:
- CMIP5 /
- Teleconnection pattern /
- Regional climate /
- Model evaluation
-
图 5 观测和模式资料中EU模态对应的PC序列与冬季东亚地区地表气温相关系数分布(等值线间隔为0.2,粗实线为零线,虚线为负值;浅、深黄(蓝)阴影区为通过95%、99%信度检验)
Figure 5. Observed and GCMs simulated correlation coefficients between the PC that corresponds to EU mode and regional winter surface temperature over East Asia-the West Pacific. (Contour interval is 0.2. The thick solid lines indicate the zero contour and the dashed lines indicate negative values. The light and dark yellow (blue) shadings are for values that exceed the 95% and 99% confidence levels, respectively)
图 12 RCP4.5情景下CSIRO-Mk3.6.0模式中EU指数与冬季东亚地区(a)气温和(b)降水量的相关分布图(等值线间隔为0.1,粗实线为零线,实线为正,虚线为负,浅、深黄(蓝)阴影表示通过95%、99%信度检验)
Figure 12. CSIRO-Mk3.6.0 simulated correlation coefficients between EU index and (a) regional winter air temperature, (b) winter precipitation over East Asia-the West Pacific (contour interval is 0.1. The thick solid lines indicate the zero contour, the solid lines and dashed lines indicate positive and negative values, respectively. The light and dark yellow (blue) shadings are for values that exceed the 95% and 99% confidence levels, respectively)
表 1 CMIP5中14个模式来源以及分辨率简介
Table 1. CMIP5 models used in this study, including their acronyms, host institutions, and spatial resolution.
模式 所属机构 分辨率(纬度×经度) BCC-CSM1.1 北京气候中心—中国气象局(中国) 2.81°×2.81° CanESM2 加拿大气候模拟与分析中心(加拿大) 2.81°×2.79° CCSM4 美国国家大气研究中心(美国) 1.25°×0.95° CNRM-CM5 法国气象局气象研究中心(法国) 1.41°×1.40° CSIRO-Mk3.6.0 澳大利亚联邦科学与工业研究和昆士兰州气候变化研究中心(澳大利亚) 1.875°×1.85° FGOALS-s2 中国科学院大气物理研究所(中国) 2.81°×1.41° GFDL-CM3 美国地球物理流体动力学实验室(美国) 2.5°×2.0° GISS-E2-R 美国航空和航天局(美国) 2.5°×2.0° HadCM3 哈德来气候预测和研究中心(英国) 3.75°×2.5° INM-CM4 俄罗斯数值数学研究院(俄罗斯) 2.0°×1.5° IPSL-CM5A-LR 皮埃尔—西蒙·拉普拉斯研究所(法国) 3.75°×1.89° MIROC5 日本气候系统研究中心(日本) 1.41°×1.40° MRI-CGCM3 日本气象研究所(日本) 1.13°×1.12° NorESM1-M 挪威气候中心(挪威) 2.50°×1.89° 表 2 CMIP5各模式遥相关指数与NCEP资料指数的相关系数及均方差
Table 2. Correlation coefficients of EU and WP indexes between CMIP5 simulations and NCEP observations, and the mean square deviations
模式 EU指数 WP指数 相关系数 均方差 相关系数 均方差 1 BCC-CSM1.1 0.13 0.71 -0.06 0.81 2 CanESM2 -0.25 0.67 -0.04 0.75 3 CCSM4 0.03 0.73 -0.09 0.71 4 CNRM-CM5 -0.05 0.78 -0.05 0.83 5 CSIRO-Mk3.6.0 0.02 0.72 0.16 0.68 6 FGOALS-s2 -0.16 0.71 -0.03 0.68 7 GFDL-CM3 -0.15 0.74 0.03 0.72 8 GISS-E2-R -0.06 0.86 -0.06 0.71 9 HadCM3 -0.05 0.80 0.15 0.78 10 INM-CM4 0.12 0.77 0.03 0.88 11 IPSL-CM5A-LR -0.09 0.72 -0.03 0.75 12 MIROC5 0.03 0.74 0.14 0.76 13 MRI-CGCM3 0.11 0.66 0.05 0.72 14 NorESM1-M -0.30 0.74 -0.10 0.85 15 MME -0.19 0.68 -0.02 0.69 表 3 CMIP5各模式与NCEP再分析资料遥相关型的空间相关系数
Table 3. Spatial correlation coefficients of EU and WP modes between CMIP5 models and NCEP data
模式 EU型(再分析资料EOF2) WP型(再分析资料EOF1) 模态 相关系数 模态 相关系数 1 BCC-CSM1.1 EOF4 0.57 EOF1 0.83 2 CanESM2 EOF3 0.70 EOF1 0.79 3 CCSM4 EOF3 0.69 EOF1 0.81 4 CNRM-CM5 EOF1 0.62 EOF1 0.88 5 CSIRO-Mk3.6.0 EOF3 0.81 EOF1 0.83 6 FGOALS-s2 EOF2 0.50 EOF1 0.79 7 GFDL-CM3 EOF3 0.54 EOF1 0.73 8 GISS-E2-R EOF1 0.74 EOF1 0.66 9 HadCM3 EOF2 0.79 EOF1 0.59 10 INM-CM4 EOF2 0.81 EOF1 0.91 11 IPSL-CM5A-LR EOF4 0.64 EOF1 0.86 12 MIROC5 EOF2 0.47 EOF2 0.83 13 MRI-CGCM3 EOF3 0.78 EOF3 0.82 14 NorESM1-M EOF2 0.67 EOF1 0.65 15 MME EOF2 0.75 EOF1 0.86 -
[1] 陈红. 2014.CMIP5气候模式对中国东部夏季降水年代际变化的模拟性能评估[J].气候与环境研究, 19 (6):773-786. doi: 10.3878/j.issn.1006-9585.2014.13174Chen Hong. 2014. Validation of the CMIP5 climate models in simulating decadal variations of summer rainfall in eastern China[J]. Climatic and Environmental Research (in Chinese), 19 (6):773-786, doi:10.3878/j.issn.1006-9585. 2014.13174. [2] 胡芩, 姜大膀, 范广洲. 2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38 (5):924-938. doi: 10.3878/j.issn.1006-9895.2013.13197Hu Qin, Jiang Dabang, Fan Guangzhou. 2014. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (5):924-938, doi: 10.3878/j.issn.1006-9895.2013.13197. [3] 黄海玲, 江志红, 王志福, 等. 2015.CMIP5模式对东亚500 hPa高度场主要模态时空结构模拟能力的评估[J].气象学报, 73 (1):110-127. doi: 10.11676/qxxb2014.065Huang Hailing, Jiang Zhihong, Wang Zhifu, et al. 2015. The evaluation of the 500 hPa geopotential height's main modes in East Asia as done by the CMIP5 models[J]. Acta Meteorologica Sinica, 73 (1):110-127, doi: 10.11676/qxxb2014.065. [4] 姜大膀, 田芝平. 2013. 21世纪东亚季风变化:CMIP3和CMIP5模式预估结果[J].科学通报, 58 (8):707-716. doi: 10.1007/S11434-012-5533-0Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century:Results of CMIP3 and CMIP5 models[J]. Chinese Science Bulletin, 58 (12):1427-1435, doi: 10.1007/S11434-012-5533-0. [5] 金晨曦, 周天军. 2014.参加CMIP5的四个中国气候模式模拟的东亚冬季风年际变率[J].大气科学, 38 (3):453-468. doi: 10.3878/j.issn.1006-9895.2013.13180Jin Chenxi, Zhou Tianjun. 2014. Analysis of the interannual variations of the East Asian winter monsoon simulation by four CMIP5 GCMs[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3):453-468, doi:10.3878/j.issn. 1006-9895.2013.13180. [6] Li G, Xie S P. 2012. Origins of tropical-wide SST biases in CMIP multi-model ensembles[J]. Geophys. Res. Lett., 39 (22):L22703, doi: 10.1029/2012GL053777. [7] Li G, Xie S P. 2014. Tropical biases in CMIP5 multi-model ensemble:The excessive equatorial Pacific cold tongue and double ITCZ problems[J]. J. Climate, 27 (4):1765-1780, doi: 10.1175/JCLI-D-13-00337.1. [8] 李维京, 丑纪范. 1990.北半球月平均环流与长江中下游降水的关系[J].气象科学, 10 (2):139-146. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199002003.htmLi Weijing, Chou Jifan. 1990. Relation between monthly mean circulation in the Northern Hemisphere and the summer precipitation in the middle and lower reaches of Changjiang River[J]. Scientia Meteorologica Sinica (in Chinese), 10 (2):139-146. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199002003.htm [9] 李勇. 2006. 西太平洋遥相关型的环流结构特征及其与我国冬季气候的关系[D]. 南京信息工程大学硕士学位论文.Li Yong. 2006.Circulation structure features of western Pacific teleconnection pattern and their relation with China's climate in winter[D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology. [10] 李勇, 何金海, 姜爱军, 等. 2007.冬季西太平洋遥相关型的环流结构特征及其与我国冬季气温和降水的关系[J].气象科学, 27 (2):119-125. doi: 10.3969/j.issn.1009-0827.2007.02.001Li Yong, He Jinhai, Jiang Aijun, et al. 2007. Circulation structure features of western Pacific teleconnection pattern in winter and their relation with China's temperature and precipitation in winter[J]. Scientia Meteorologica Sinica (in Chinese), 27 (2):119-125, doi:10.3969/j.issn. 1009-0827.2007.02.001. [11] 刘毓赟, 陈文. 2012.北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J].大气科学, 36 (2):423-432. doi: 10.3878/j.issn.1006-9895.2011.11066Liu Yuyun, Chen Wen. 2012. Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):423-432, doi: 10.3878/j.issn.1006-9895.2011.11066. [12] Ning L, Bradley R S. 2016. NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs[J]. Climate Dyn., 46 (3):1257-1276, doi: 10.1007/s00382-015-2643-9. [13] 施能. 1996.北半球冬季大气环流遥相关的长期变化及其与我国气候变化的关系[J].气象学报, 54 (6):675-683. doi: 10.11676/qxxb1996.070Shi Neng. 1996. Secular variation of winter atmospheric teleconnection pattern in the Northern Hemisphere and its relation with China's climate change[J]. Acta Meteorologica Sinica, 54 (6):675-683, doi: 10.11676/qxxb1996.070. [14] 陶纯苇, 姜超, 孙建新. 2016.CMIP5模式对中国东北气候模拟能力的评估[J].气候与环境研究, 21 (3):357-366. doi: 10.3969/j.issn.1673-503X.2010.03.001Tao Chunwei, Jiang Chao, Sun Jianxin. 2016. Evaluation of CMIP5 models performance on climate simulation in Northeast China[J]. Climatic and Environmental Research (in Chinese), 21 (3):357-366, doi: 10.3969/j.issn.1673-503X.2010.03.001. [15] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram[J]. J. Geophys. Res., 106 (D7):7183-7192, doi: 10.1029/2000JD900719. [16] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design[J]. Bull. Amer. Meteor. Soc., 93 (4):485-498, doi: 10.1175/BAMS-D-11-00094.1. [17] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter[J]. Mon. Wea. Rev., 109 (4):784-812, doi:10.1175/1520-0493(1981)109 < 0784:TITGHF > 2.0.CO; 2. [18] 吴洪宝. 1993.我国冬季气温异常与北半球500 hPa大气环流遥相关型的关系[J].南京气象学院学报, 16 (2):115-119. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199302000.htmWu Hongbao. 1993. Relationships between winter temperature anomalies in China and 500-hPa teleconnection patterns of the atmospheric circulation in the Northern Hemisphere[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 16 (2):115-119. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199302000.htm [19] 吴蔚, 穆海振, 梁卓然, 等. 2016.CMIP5全球气候模式对上海极端气温和降水的情景预估[J].气候与环境研究, 21 (3):269-281. doi: 10.3878/j.issn.1006-9585.2016.14225Wu Wei, Mu Haizhen, Liang Zhuoran, et al. 2016. Projected changes in extreme temperature and precipitation events in Shanghai based on CMIP5 simulations[J]. Climatic and Environmental Research (in Chinese), 21 (3):269-281, doi: 10.3878/j.issn.1006-9585.2016.14225. [20] 徐经纬, 徐敏, 蒋熹, 等. 2016.区域气候模式REMO对中国气温和降水模拟能力的评估[J].气候变化研究进展, 12 (4):286-293. doi: 10.12006/j.issn.1673-1719.2015.194Xu Jingwei, Xu Min, Jiang Xi, et al. 2016. The assessment of surface air temperature and precipitation simulated by regional climate model REMO over China[J]. Climate Change Research (in Chinese), 12 (4):286-293, doi: 10.12006/j.issn.1673-1719.2015.194. [21] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmos. Oceanic Sci. Lett., 5 (6):489-494, doi: 10.1080/16742834.2012.11447041. [22] 张蓓, 戴新刚. 2016. 2006~2013年CMIP5模式中国降水预估误差分析[J].大气科学, 40 (5):981-994. doi: 10.3878/j.issn.1006-9895.1511.15212Zhang Bei, Dai Xin'gang. 2016. Assessment of the deviation of China precipitation projected by CMIP5 models for 2006-2013[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (5):981-994, doi: 10.3878/j.issn.1006-9895.1511.15212. [23] 张芳, 董敏, 吴统文. 2014.CMIP5模式对ENSO现象的模拟能力评估[J].气象学报, 72 (1):30-48. doi: 10.11676/qxxb2014.011Zhang Fang, Dong Min, Wu Tongwen. 2014. Evaluation of the ENSO features simulations as done by the CMIP5 models[J]. Acta Meteorologica Sinica, 72 (1):30-48, doi: 10.11676/qxxb2014.011. -