高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬季蒙古反气旋和伊朗反气旋的年代际变化特征

智协飞 田笑 朱丹 宋斌 侯美夷

智协飞, 田笑, 朱丹, 宋斌, 侯美夷. 冬季蒙古反气旋和伊朗反气旋的年代际变化特征[J]. 大气科学, 2017, 41(5): 999-1009. doi: 10.3878/j.issn.1006-9895.1701.16243
引用本文: 智协飞, 田笑, 朱丹, 宋斌, 侯美夷. 冬季蒙古反气旋和伊朗反气旋的年代际变化特征[J]. 大气科学, 2017, 41(5): 999-1009. doi: 10.3878/j.issn.1006-9895.1701.16243
Xiefei ZHI, Xiao TIAN, Dan ZHU, Bin SONG, Meiyi HOU. Interdecadal Variations of Wintertime Anticyclonic Activity in the Mongolian Plateau and Iranian Plateau[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5): 999-1009. doi: 10.3878/j.issn.1006-9895.1701.16243
Citation: Xiefei ZHI, Xiao TIAN, Dan ZHU, Bin SONG, Meiyi HOU. Interdecadal Variations of Wintertime Anticyclonic Activity in the Mongolian Plateau and Iranian Plateau[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5): 999-1009. doi: 10.3878/j.issn.1006-9895.1701.16243

冬季蒙古反气旋和伊朗反气旋的年代际变化特征

doi: 10.3878/j.issn.1006-9895.1701.16243
基金项目: 

国家重点基础研究发展计划项目 2012CB955204

江苏省研究生培养创新工程项目 KYLX_0833

详细信息
    作者简介:

    智协飞, 男, 1965年生, 博士、教授, 主要从事季风动力学、气候变化、数值天气预报的研究。E-mail:zhi@nuist.edu.cn

  • 中图分类号: P404

Interdecadal Variations of Wintertime Anticyclonic Activity in the Mongolian Plateau and Iranian Plateau

Funds: 

National Basic Research Program of China 2012CB955204

Scientific Research and Innovation Plan for College Graduates of Jiangsu Province KYLX_0833

  • 摘要: 根据NCEP/NCAR再分析资料,采用客观判定和追踪方法,研究了1948~2013年欧亚地区冬季温带反气旋的年代际气候变化的活动特征。结果发现,反气旋的高频分布区也是反气旋气候变化最大的区域,其中蒙古高原和伊朗高原的反气旋最活跃。反气旋的频数和强度既有长期趋势也有年代际变化。蒙古高原和伊朗高原的反气旋频数具有明显的年代际变化特征。反气旋频数具有2~6年和16~30年周期,且具有变频特征。EOF分解发现蒙古高原和伊朗高原的反气旋频数分布均在较高纬度和较低纬度地区呈现显著相反的偶子极态分布形式。蒙古高原的反气旋强度的变化基本可以体现欧亚大陆反气旋强度的变化。反气旋分布和强度的年代际变化可以用对流层低层经向温度梯度表示的斜压锋的位置和强度的年代际变化来解释,但斜压锋对欧亚反气旋的影响具有区域性。蒙古高原的反气旋在1960~1975年50°N以北较多,1990~2005年50°N以南较多的偶极子态变化与80°~120°E区域的斜压锋纬度位置自55°N南移到45°N有密切关系,30°~80°E区域的斜压锋纬度位置变化不能单独解释伊朗高原反气旋偶极子态年代际变化。自21世纪00年代中期斜压锋偏强对反气旋强度偏强有重要影响。
  • 图  1  1948~2013年欧亚地区冬季反气旋中心累计频数(a)年平均和(b)方差的地理分布

    Figure  1.  (a) Annual mean and (b) variance of frequency of anticyclones' centers in Eurasia in winter during 1948-2013

    图  2  1948~2013年(a)蒙古高原、(b)伊朗高原冬季反气旋数距平的时间序列,(c)蒙古高原、(d)伊朗高原冬季反气旋数距平的小波功率谱(阴影)。图a、b中实线为低频滤波曲线,图c、d中黑线包围的部分表示通过信度水平为90%的检验,网格区是小波变换受边界影响的区域

    Figure  2.  Anomalies of wintertime anticyclone numbers in (a) the Mongolian Plateau and (b) the Iranian Plateau for 1948-2013. Smooth lines are the low frequency filtering curves. Morlet wavelet power spectra (shaded areas) of the anomalies of wintertime anticyclone numbers are shown in (c) Mongolian Plateau and (d) Iranian Plateau for 1948-2013. The areas above 90% confidence level are surrounded by the black lines, the cross-hatched region shows the cone of influence

    图  3  1948~2013年(a、c)蒙古高原(方差贡献:24.5%)和(b、d)伊朗高原(方差贡献:39.3%)冬季反气旋中心累计频数EOF第一模态的(a、b)空间分布和(c、d)时间系数。图a、b中四子区域A、B、C、D的范围为:A(50°~60°N, 80°~120°E);B(40°~50°N, 80°~120°E);C(35°~ 50°N, 30°~80°E);D(25°~35°N, 30°~80°E)

    Figure  3.  (a, b) Spatial distributions and (c, d) time coefficients of EOF1 (first mode of EOF) of frequency of anticyclones' centers in (a, c) Mongolian Plateau and (b, d) Iranian Plateau in the winter for 1948-2013. Four subregions A, B, C, D: A (50°-60°N, 80°-120°E); B (40°-50°N, 80°-120°E); C (35°-50°N, 30°-80°E); D (25°-35°N, 30°-80°E). The variance contributions are 24.5% and 39.3% in Mongolian Plateau and Iranian Plateau, respectively

    图  4  1948~2013年4个子区域的反气旋频数的标准化距平(柱状):(a)A(50°~60°N, 80°~120°E);(b)B(40°~50°N, 80°~120°E);(c)C(35°~ 50°N, 30°~80°E);(d)D(25°~35°N, 30°~80°E)。虚线为线性趋势线,实线表示11点高斯滤波曲线。趋势:A:−0.25 (10 a)-1;B:0.11 (10 a) -1;C:0.30 (10 a) -1;D:−0.08 (10 a) -1

    Figure  4.  Standardized departures of anticyclone frequency (bars) in four regions during 1948-2013: (a) A (50°-60°N, 80°-120°E); (b) B (40°-50°N, 80°-120°E); (c) C (35°-50°N, 30°-80°E); (d) D (25°-35°N, 30°-80°E). The dashed lines and solid lines represent linear trend and 11-point Gaussian filter, respectively. Trend: A: −0.25 (10 a)-1; B: 0.11 (10 a)-1; C: 0.30 (10 a)-1; D: −0.08 (10 a)-1

    图  5  1948~2013年冬季欧亚(a)蒙古高原和(b)伊朗高原的反气旋中心的相对气压(柱状)随时间的变化。虚线为线性趋势线,实线为11点高斯滤波曲线

    Figure  5.  Variations of the relative pressure (bars) of anticyclones' centers in (a) Mongolia Plateau and (b) Iran Plateau during 1948-2013. The dashed lines and solid lines represent linear trend and result of 11-point Gaussian filter, respectively

    图  6  1948~2013年冬季欧亚(a)80°~120°E和(b)30°~80°E的850 hPa斜压锋标准化的纬度位置随时间的变化

    Figure  6.  Variations in the standardized latitude position of the baroclinic front (SPBF) over (a) 80°-120°E and (b) 30°-80°E in the winter in Eurasia during 1948-2013

    图  7  欧亚地区850 hPa斜压锋的(a)位置和(b)强度(单位:℃ latitude-1)的变化分布。图a中,实线表示1990~2005年的平均,虚线表示1960~ 1975年的平均。图b中,实线表示1985~2000年的平均,虚线表示1958~1970年的平均

    Figure  7.  (a) Changes in mean position and intensity (units: ℃ latitude-1) of the baroclinic front in Eurasia. In Fig. a: Solid line: mean position for 1990-2005; dashed line: mean position for 1960-1975. In Fig. b: Solid lines: mean intensity for 1985-2000; dashed lines: mean intensity for 1958-1970

  • [1] Agee E M. 1991. Trends in cyclone and anticyclone frequency and comparison with periods of warming and cooling over the Northern Hemisphere[J]. J. Climate, 4 (2), 263-267. doi: 10.1175/1520-0442(1991)004<0263:TICAAF>2.0.CO;2
    [2] Ammar K, El-Metwally M, Almazroui M, et al. 2014. A climatological analysis of Saharan cyclones[J]. Climate Dyn., 43 (1-2):483-501, doi: 10.1007/s00382-013-2025-0.
    [3] Baker D G, Ruschy D L, Skaggs R H, et al. 1992. Air temperature and radiation depressions associated with a snow cover[J]. J. Appl. Meteor, 31 (3):247-254, doi:10.1175/1520-0450(1992)031<0247:ATARDA>2.0. CO; 2.
    [4] 陈海山, 许蓓. 2012.欧亚大陆冬季雪深的时空演变特征及其影响因子分析[J].地理科学, 32 (2):129-135. doi: 10.11821/yj2008020003

    Chen Haishan, Xu Bei. 2012. Spatial and temporal features of snow depth in winter over Eurasian continent and its impacting factors[J]. Scientia Geographica Sinica (in Chinese), 32 (2):129-135, doi: 10.11821/yj2008020003.
    [5] 陈家辉. 1997.入海冷高压与副热带高压对比分析[J].大连海事大学学报, 23 (3):11-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DLHS703.002.htm

    Chen Jiahui. 1997. Comparison and analysis of the cold high approaching to sea and subtropical high[J]. J. Dalian Mar. Univ. (in Chinese), 23 (3):11-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DLHS703.002.htm
    [6] Chen L, Tan B K, Kvamstø N G, et al. 2014. Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets[J]. Tellus A, 66 (1):21889, doi: 10.3402/tellusa.v66.21889.
    [7] 陈雯, 智协飞. 2008.太平洋副热带高压及南亚高压在NCEP/NCAR和ECMWF再分析资料中的对比研究[J].热带气象学报, 24 (2):189-194. doi: 10.3969/j.issn.1004-4965.2008.02.012

    Chen Wen, Zhi Xiefei. 2008. Comparisons of the West Pacific subtropical high and of the South Asia high between NCEP/NCAR and ECMWF reanalysis datasets[J]. J. Trop. Meteor. (in Chinese), 24 (2):189-194, doi: 10.3969/j.issn.1004-4965.2008.02.012.
    [8] Fan K, Xu Z Q, Tian B Q. 2014. Has the intensity of the interannual variability in summer rainfall over South China remarkably increased?[J] Meteor. Atmos. Phys., 124 (1-2):23-32, doi: 10.1007/s00703-013-0301-5.
    [9] Favre A, Gershunov A. 2006. Extra-tropical cyclonic/anticyclonic activity in north-eastern Pacific and air temperature extremes in western North America[J]. Climate Dyn., 26 (6):617-629, doi: 10.1007/s00382-005-0101-9.
    [10] Favre A, Gershunov A. 2009. North Pacific cyclonic and anticyclonic transients in a global warming context:Possible consequences for western North American daily precipitation and temperature extremes[J]. Climate Dyn., 32 (7-8):969-987, doi: 10.1007/s00382-008-0417-3.
    [11] Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophys. Res. Lett., 39 (6), doi: 10.1029/2012GL051000.
    [12] 高由禧. 1953.冬季冷高压移动问题[J].气象学报, 24 (1):11-27. doi: 10.11676/qxxb1953.009

    Gao Youxi. 1953. The moving of cold high[J]. Acta Meteor. Sinica (in Chinese), 24 (1):11-27, doi: 10.11676/qxxb1953.009.
    [13] Galarneau Jr T J, Bosart L F, Aiyyer A R. 2008. Closed anticyclones of the subtropics and mid-latitudes:A 54-yr climatology (1950-2003) and three case studies[M]//Bosart L F, Bluestein H B. A Tribute to Fred Sanders. Boston:American Meteorological Society, 349-392, doi:10.1007/978-0-933876-68-2_16.
    [14] Godev N. 1971. Anticyclonic activity over South Europe and its relationship to orography[J]. J. Appl. Meteor., 10 (6):1097-1102, doi:10.1175/1520-0450(1971)010<1097:AAOSEA>2.0.CO; 2.
    [15] Harman J R. 1987. Mean monthly North American anticyclone frequencies, 1950-79[J]. Mon. Wea. Rev., 115 (11):2840-2848, doi:10.1175/1520-0493(1987)115<2840:MMNAAF>2.0.CO; 2.
    [16] Hatzaki M, Flocas H A, Simmonds I, et al. 2014. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean[J]. J. Climate, 27 (24):9272-9289, doi: 10.1175/JCLI-D-14-00186.1.
    [17] Ioannidou L, Yau M K. 2008. A climatology of the Northern Hemisphere winter anticyclones[J]. J. Geophys. Res., 113 (D8), doi: 10.1029/2007JD008409.
    [18] Jones D A, Simmonds I. 1994. A climatology of Southern Hemisphere anticyclones[J]. Climate Dyn., 10 (6-7):333-348, doi: 10.1007/BF00228031.
    [19] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77 (3):437-471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO; 2.
    [20] Kim K Y, Wu Q G. 1999. A comparison study of EOF techniques:Analysis of nonstationary data with periodic statistics[J]. J. Climate, 12 (1):185-199, doi: 10.1175/1520-0442-12.1.185.
    [21] Kistler R, Collins W, Saha S, et al. 2001. The NCEP-NCAR 50-year reanalysis:Monthly means CD-ROM and documentation[J]. Bull. Amer. Meteor. Soc., 82 (2):247-267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO; 2.
    [22] Kouroutzoglou J, Flocas H A, Keay K, et al. 2014. A high-resolution climatological study on the comparison between surface explosive and ordinary cyclones in the Mediterranean[J]. Reg. Environ. Change, 14 (5):1833-1846, doi: 10.1007/s10113-013-0461-3.
    [23] Lorenz E N. 1956. Empirical orthogonal functions and statistical weather prediction[R]. Science Report No. 1. Cambridge, MA:Statistical Forecasting Project Department of Meteorology, 49pp.
    [24] North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal function[J]. Mon. Wea. Rev., 110 (7):699-706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO; 2.
    [25] Pezza A B, Ambrizzi T. 2003. Variability of Southern Hemisphere cyclone and anticyclone behavior:Further analysis[J]. J. Climate, 16 (7):1075-1083, doi:10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO; 2.
    [26] Pezza A B, Simmonds I, Renwick J A. 2007. Southern Hemisphere cyclones and anticyclones:Recent trends and links with decadal variability in the Pacific Ocean[J]. Int. J. Climatol., 27 (11):1403-1419, doi: 10.1002/joc.1477.
    [27] 钱维宏, 张玮玮. 2007.我国近46年来的寒潮时空变化与冬季增暖[J].大气科学, 31 (6):1266-1278. doi: 10.3878/j.issn.1006-9895.2007.06.21

    Qian Weihong, Zhang Weiwei. 2007. Changes in cold wave events and warm winter in China during the last 46 years[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (6):1266-1278, doi: 10.3878/j.issn.1006-9895.2007.06.21.
    [28] 史湘军, 智协飞. 2007. 1950~2004年欧亚大陆阻塞高压活动的统计特征[J].南京气象学院学报, 30 (3):338-344. doi: 10.3969/j.issn.1674-7097.2007.03.007

    Shi Xiangjun, Zhi Xiefei. 2007. Statistical characteristics of blockings in Eurasia from 1950 to 2004[J]. J. Nanjing Inst. Meteor. (in Chinese), 30 (3):338-344, doi:10.3969/j. issn.1674-7097.2007.03.007.
    [29] Simmonds I, Wu X R. 1993. Cyclone behaviour response to changes in winter Southern Hemisphere sea-ice concentration[J]. Quart. J. Roy. Meteor. Soc., 119 (513):1121-1148, doi: 10.1002/qj.49711951313.
    [30] Sinclair M R. 1996. A climatology of anticyclones and blocking for the Southern Hemisphere[J]. Mon. Wea. Rev., 124 (2):245-263, doi:10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO; 2.
    [31] 田笑, 智协飞. 2016.欧亚冬季温带反气旋活动的气候特征[J].气象学报, 74 (6):850-859. doi: 10.11676/qxxb2016.066

    Tian Xiao, Zhi Xiefei. 2016. Climatology of the winter extratropical antiyclones over Eurasia[J]. Acta Meteor. Sinica (in Chinese), 74 (6):850-859, doi: 10.11676/qxxb2016.066.
    [32] Torrence C, Compo G P. 1998. A practical guide to wavelet analysis[J]. Bull. Amer. Meteor. Soc., 79 (1):61-78, doi:10.1175/1520-0477(1998) 079<0061:APGTWA>2.0.CO; 2.
    [33] Trigo I F. 2006. Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector:A comparison between ERA-40 and NCEP/NCAR reanalyses[J]. Climate Dyn., 26 (2-3):127-143, doi: 10.1007/s00382-005-0065-9.
    [34] Voskresenskaya E, Bardin M, Kovalenko O. 2016. Climate variability of winter anticyclones in the Mediterranean-Black Sea region[J]. Quat. Int., 409:70-74, doi: 10.1016/j.quaint.2015.09.096.
    [35] Wagner J A. 1973. The influence of average snow depth on monthly mean temperature anomaly[J]. Mon. Wea. Rev., 101 (8):624-626, doi:10.1175/1520-0493(1973)101<0624:TIOASD>2.3.CO; 2.
    [36] Wallace J M, Lim G H, Blackmon M L. 1988. Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides[J]. J. Atmos. Sci., 45 (3):439-462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO; 2.
    [37] Wang X L, Feng Y, Chan R, et al. 2016. Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets[J]. Atmos. Res., 181:133-153, doi: 10.1016/j.atmosres.2016.06.010.
    [38] Wang X M, Zhai P M, Wang C C. 2009. Variations in extratropical cyclone activity in northern East Asia[J]. Adv. Atmos. Sci., 26 (3):471-479, doi: 10.1007/s00376-009-0471-8.
    [39] 王遵娅, 丁一汇. 2006.近53年中国寒潮的变化特征及其可能原因[J].大气科学, 30 (6):1068-1076. doi: 10.3878/j.issn.1006-9895.2006.06.02

    Wang Zunya, Ding Yihui. 2006. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (6):1068-1076, doi: 10.3878/j.issn.1006-9895.2006.06.02.
    [40] 徐晨, 陈海山, 黄菱芳. 2015.冬季欧亚中高纬陆面热力异常与同期大气环流的联系[J].高原气象, 34 (6):1584-1592. doi: 10.7522/j.issn.1000-0534.2014.00062

    Xu Chen, Chen Haishan, Huang Lingfang. 2015. Possible linkage between land surface thermal anomalies in mid-high latitudes of Eurasian continent and atmospheric general circulation in winter[J]. Plateau Meteor. (in Chinese), 34 (6):1584-1592, doi: 10.7522/j.issn.1000-0534.2014.00062.
    [41] 张淮, 史久恩. 1957.东亚的反气旋活动[J].气象学报, 28 (3):167-174. doi: 10.11676/qxxb1957.014

    Zhang Huai, Shi Jiuen. 1957. The activity of the anticyclone in eastern Asia[J]. Acta Meteor. Sinica (in Chinese), 28 (3):167-174, doi: 10.11676/qxxb1957.014
    [42] 张培忠, 陈光明. 1999.影响中国寒潮冷高压的统计研究[J].气象学报, 57 (4):493-501. doi: 10.11676/qxxb1999.046

    Zhang Peizhong, Chen Guangming. 1999. A statistical analysis of the cold wave high which influences on China[J]. Acta Meteor. Sinica (in Chinese), 57 (4):493-501, doi:10.11676/qxxb1999. 046.
    [43] Zhang Xiangdong, Lu Chuhan, Guan Zhaoyong. 2012. Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia[J]. Environ. Res. Lett., 7 (4):044044, doi: 10.1088/1748-9326/7/4/044044.
    [44] 赵蔚, 朱伟军, 陈海山. 2007.冬季欧亚积雪异常对北太平洋风暴轴的影响[J].南京气象学院学报, 30 (6):807-813. doi: 10.3969/j.issn.1674-7097.2007.06.011

    Zhao Wei, Zhu Weijun, Chen Haishan. 2007. Effects of Eurasian snow cover anomaly on northern Pacific storm track during winter[J]. J. Nanjing of Inst. Meteor. (in Chinese), 30 (6):807-813, doi: 10.3969/j.issn.1674-7097.2007.06.011.
    [45] Zhi Xiefei. 2001. Interannual variability of the Indian summer monsoon and its modeling with a zonally symmetric 2D-model[C]. Aachen:Shaker Verlag, doi:10.13140/RG.2.2.27253.99045.
    [46] Zhi Xiefei, Shi Xiangjun. 2006. Interannual variation of blockings in Eurasia and its relation to the flood disaster in the Yangtze River valley during boreal summer[C]//Proceedings of the tenth WMO international symposium on meteorological education and training. Nanjing, China, 21-26.
    [47] 朱乾根, 林锦瑞, 寿绍文. 1981.天气学原理和方法[M].北京:气象出版社, 649pp.

    Zhu Qiangen, Lin Jinrui, Shou Shaowen. 1981. Principle and Method of Synoptic Meteorology (in Chinese)[M]. Beijing:China Meteorological Press, 649pp.
    [48] Zishka K M, Smith P J. 1980. The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950-77[J]. Mon. Wea. Rev., 108 (4):387-401, doi:10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO; 2.
  • 加载中
图(7)
计量
  • 文章访问数:  1270
  • HTML全文浏览量:  2
  • PDF下载量:  1475
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 网络出版日期:  2017-02-13
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回