高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同浓度污染气溶胶对一次暴雨的影响

杨桃进 刘宇迪 眭敏

杨桃进, 刘宇迪, 眭敏. 不同浓度污染气溶胶对一次暴雨的影响[J]. 大气科学, 2017, 41(4): 882-896. doi: 10.3878/j.issn.1006-9895.1702.16235
引用本文: 杨桃进, 刘宇迪, 眭敏. 不同浓度污染气溶胶对一次暴雨的影响[J]. 大气科学, 2017, 41(4): 882-896. doi: 10.3878/j.issn.1006-9895.1702.16235
Taojin YANG, Yudi LIU, Min SUI. Impacts of Different Concentrations of Anthropogenic Pollutants on a Rainstorm[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 882-896. doi: 10.3878/j.issn.1006-9895.1702.16235
Citation: Taojin YANG, Yudi LIU, Min SUI. Impacts of Different Concentrations of Anthropogenic Pollutants on a Rainstorm[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 882-896. doi: 10.3878/j.issn.1006-9895.1702.16235

不同浓度污染气溶胶对一次暴雨的影响

doi: 10.3878/j.issn.1006-9895.1702.16235
基金项目: 

国家自然科学基金项目 41175089

详细信息
    作者简介:

    杨桃进, 男, 1991年出生, 硕士研究生, 主要从事气溶胶对天气影响的研究。E-mail:yangtaojin_st@163.com

    通讯作者:

    刘宇迪, E-mail:ydliu0509@163.com

  • 中图分类号: P426

Impacts of Different Concentrations of Anthropogenic Pollutants on a Rainstorm

Funds: 

National Natural Science Foundation of China 41175089

  • 摘要: 本文应用WRF-Chem模式耦合人为排放源,模拟了2011年8月13日的一次强降水过程,研究了正常(试验Norm)和两种极端情况(试验High和试验Low)下3种排放强度的人为污染气溶胶对微物理过程和降水的影响。结果表明:不同排放强度下降水开始的时间没有变化,低排放情况下降水区域未发生变化,暴雨前期试验Low的降水增强,后期减弱,降水中心强度减弱,周边降水增强,降水分散;高排放情况下降水区域明显减小,降水强度和各个量级的降水区域都减少。雨水和霰含量的变化是导致降水发生变化的原因,不同强度的污染气溶胶通过影响微物理过程影响大气的热力和动力过程,大气动力过程的变化反过来又通过微物理过程影响降水粒子的增长,从而影响地面降水。影响机理可概括为:当污染气溶胶的排放浓度增强,水汽凝结和冰晶凝华增长过程的减弱导致微物理过程的大气加热减弱,可用于发展对流的能量减少,上升运动减弱,对流强度的减弱抑制了了雨水和霰收集云水的增长,导致了可降水粒子含量的减少,降水减弱。
  • 图  1  模拟区域设置

    Figure  1.  The model domains

    图  2  北京及周边地区三个试验SO2的排放强度(单位:mol km-2 h-1)分布:(a)High、(b)Norm和(c)Low试验;(d)北京站、(e)香河站和(f)兴隆站观测和模拟的PM2.5浓度随时间的变化,其中黑线代表观测值(Obs),红线、绿线和蓝线分别代表试验High(数值为试验High的值的0.1倍)、试验Norm和试验Low的模拟值

    Figure  2.  The emission intensity (units: mol km-2 h-1) of SO2 for Experiments (a) High, (b) Norm, and (c) Low, respectively; observed and simulated PM2.5 concentrations at (d) Beijing, (e) Xianghe, and (f) Xinglon stations, respectively. The black line represents observations, the red is for Experiment High (multiplied by 0.1), and the green (blue) is for Experiment Norm (Low)

    图  3  2011年8月13日12:00到14日00:00试验(a)Norm、(b)Low、(c)High和(d)观测(Obs)的12小时累积降水量以及(e)区域平均的总降水量随时间的变化

    Figure  3.  12-h accumulative precipitation simulated from Experiment (a) Norm, (b) Low, (c) High, and (d) observations (Obs), (e) time series of area averaged precipitation from 1200 BJT (Beijing time) 13 to 0000 BJT 14 August, 2011

    图  4  2011年8月13日12:00到14日00:00区域A中(a)12小时累积降水量各量级所占的比率和(b)平均小时降水量随时间的变化。(a)横轴表示12小时累积降水量,纵轴表示区域A中大于该降水量的区域在A中的比率,红线、黑线和蓝线分别表示试验High、试验Norm和试验Low

    Figure  4.  (a) Percentage of each 12-h accumulative precipitation level in area A and (b) the averaged rain rate from 1200 BJT 13 to 0000 BJT 14 August 2011. The horizontal axis in (a) represents 12-h accumulative precipitation level and the vertical axis is the percentage for each level, and the red line represents Experiment High, the black (blue) line is for Experiment Norm (Low)

    图  5  2011年8月13日10:00到18:00区域A中区域平均过饱和度在0.1%的CCN数浓度:(a)试验High;(b)试验Norm;(c)试验Low

    Figure  5.  The number concentration of CCN (Cloud Condensation Nuclei) at a supersaturation rate of 0.1% averaged over area A from 1000 BJT to 1800 BJT 13 August 2011: (a) Experiment High; (b) Experiment Norm; (c) Experiment Low

    图  6  2011年8月13日10:00到18:00区域A中区域平均过饱和度在0.1%的(a1、b1、c1)云滴数、(a2、b2、c2)云水混合比和(a3、b3、c3)云水自动转换率:试验High(左列);试验Norm(中间列);试验Low(右列)

    Figure  6.  (a1, b1, c1) The number concentration of cloud drop, (a2, b2, c2) cloud mixing ratio, and (a3, b3, c3) auto-conversion rate of cloud water at a supersaturation rate of 0.1% averaged over area A from 1000 to 1800 13 August, 2011. The left column is for Experiment High, and the middle (right)column is for Experiment Norm (Low)

    图  7  2011年8月13日10:00到18:00区域A平均的(a1、b1、c1)雨水和(a2、b2、c2)霰含量的时间—高度剖面:试验Norm(左列);试验High与试验Norm的差值(中间列);试验Low与试验Norm的差值(右列)

    Figure  7.  Time–height cross sections of (a1, b1, c1) rain water content and (a2, b2, c2) graupel content averaged over area A from 1000 BJT to 1800 BJT 13 August, 2011.The left column is for Experiment Norm, the middle (right) column is the difference between Experiment High (Low) and Experiment Norm

    图  8  图 7a1c1,但为可降水粒子总的产生率Ptot

    Figure  8.  Same as Fig. 7a1c1, but for the production rate of precipitable particles Ptot

    图  9  图 7,但为PGACW(第一行)、PRACW(中间行)和PREVP(第三行)

    Figure  9.  Same as Fig. 7, but for PGACW (top panels), PRACW (middle panels), and PREVP (bottom panels)

    图  10  图 7a1c1,但为微物理过程导致的潜热加热率

    Figure  10.  Same as Fig. 7a1c1, but for latent heating rate caused by microphysical process

    图  11  (a、b)水汽凝结和(c、d)冰晶凝华增长的变化:(a、c)试验High与试验Norm的差值;(b、d)试验Low与试验Norm的差值

    Figure  11.  Changes in (a, b) water vapor condensation and (c, d) ice depositional growth: (a, c) The difference between Experiment High and Experiment Norm; (b, d) the difference between Experiment Low and Experiment Norm

    图  12  图 7a1c1,但为区域A平均的上升速度

    Figure  12.  Same as Fig. 7a1c1, but for the vertical velocity averaged over region A

    表  1  WRF-Chem模式参数化方案设置

    Table  1.   Parameterization scheme configuration of WRF-Chem model

    WRF-Chem模式各层网格参数化方案设置
    d01 d02 d03
    积云参数化方案 Grell-Freitas Grell-Freitas (Grell and Freitas, 2014) -
    微物理过程 双参数方案,progn=1 (Lin et al., 1983; Liu et al., 2005)
    长/短波辐射 RRTMG (Iacono et al., 2008)
    近地面方案 Revised MM5 Monin-Obukhov (Jimenez et al., 2012)
    陆面方案 Noah LSM (Tewari et al., 2004)
    边界层方案 YSU (Hong et al., 2006)
    化学机制 CBM-Z (Zaveri and Peters, 1999)
    气溶胶模块 MOSAIC (4 bins) (Zaveri et al., 2008)
    注:“-”表示没有采用方案
    下载: 导出CSV

    表  2  公式(2)中各项的含义

    Table  2.   The meaning of each term in equation (2)

    项目 含义 项目 含义
    PRAUT 雨水自动转换 PSAUT 雪的自动转换
    PSACI 雪对云冰的收集 PRACI 雨水对云冰的收集
    PGACI 霰对云冰的收集 PSACW 雪对云水的收集
    PRACW 雨水对云水的收集 PGACW 霰对云水的收集
    PSFI 贝吉龙过程云冰向雪转换 PSFW 贝吉龙过程云水向雪转换
    PSSUB 雪的升华 PGSUB 霰的升华
    PSDEP 雪的沉积增长 PREVP 雨水的蒸发
    Ptot 可降水粒子总的产生率
    下载: 导出CSV
  • [1] Albrecht B A. 1989. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science, 245 (4923):1227-1230, doi: 10.1126/science.245.4923.1227.
    [2] Andreae M O, Rosenfeld D, Artaxo P, et al. 2004. Smoking rain clouds over the Amazon[J]. Science, 303 (5662):1337-1342, doi:10.1126/science. 1092779.
    [3] Boucher O, Randall D, Artaxo P, et al. 2013. Clouds and aerosols[M]//Climate Change 2013:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge, UK and New York, NY, USA:Cambridge University Press.
    [4] 陈思宇, 黄建平, 付强, 等. 2012.气溶胶对我国中东部地区秋季降水的影响[J].热带气象学报, 28 (3):339-347. doi: 10.3969/j.issn.1004-4965.2012.03.006

    Chen Siyu, Huang Jianping, Fu Qiang, et al. 2012. Effects of aerosols on autumn precipitation over mid-eastern China[J]. Journal of Tropical Meteorology (in Chinese), 28 (3):339-347, doi: 10.3969/j.issn.1004-4965.2012.03.006.
    [5] Ekman A M L, Engström A, Wang C. 2007. The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud[J]. Quart. J. Roy. Meteor. Soc., 133 (627):1439-1452, doi: 10.1002/qj.108.
    [6] Emmons L K, Walters S, Hess P G, et al. 2010. Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4)[J]. Geosci. Model Dev., 3 (1):43-67, doi: 10.5194/gmd-3-43-2010.
    [7] Fan J W, Comstock J M, Ovchinnikov M. 2010. The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer[J]. Environ. Res. Lett., 5 (4):044005, doi: 10.1088/1748-9326/5/4/044005.
    [8] Fan J W, Rosenfeld D, Yang Y, et al. 2015. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China[J]. Geophys. Res. Lett., 42 (14):6066-6075, doi: 10.1002/2015GL064479.
    [9] Fast J D, Gustafson W I Jr, Easter R C, et al. 2006. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model[J]. J. Geophys. Res., 111 (D21):D21305, doi: 10.1029/2005JD006721.
    [10] Gao Y, Zhang M G, Liu X H, et al. 2012. Model analysis of the anthropogenic aerosol effect on clouds over East Asia[J]. Atmos. Oceanic Sci. Lett., 5 (1):1-7, doi: 10.1080/16742834.2012.11446968.
    [11] Grell, G. A. and Freitas, S. R., 2014. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling[J]. Atmos. Chem. Phys., 14:5233-5250, doi: 10.5194/acp-14-5233-2014.
    [12] Grell G A, Peckham S E, Schmitz R, et al. 2005. Fully coupled "online" chemistry within the WRF model[J]. Atmos. Environ., 39 (37):6957-6975, doi: 10.1016/j.atmosenv.2005.04.027.
    [13] Guenther A, Karl T, Harley P, et al. 2009. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)[J]. Atmos. Chem. Phys., 6 (11):3181-3210, doi: 10.5194/acp-6-3181-2006.
    [14] Gustafson Jr W I, Chapman E G, Ghan S J, et al. 2007. Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004[J]. Geophys. Res. Lett, 34 (19):255-268, doi: 10.1029/2007GL030021
    [15] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134:2318-2341, doi: 10.1175/MWR3199.1
    [16] Iacono, M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. J. Geophys. Res., 113 (D13):1395-1400, doi: 10.1029/2008JD009944
    [17] 江琪, 银燕, 单云鹏, 等. 2014.人为气溶胶对地形云降水的影响:以黄山地区为例[J].大气科学学报, 37 (4):405-413. doi: 10.13878/j.cnki.dqkxxb.20121105001

    Jiang Qi, Yin Yan, Shan Yunpeng, et al. 2014. The effect of artificial aerosols on orographic precipitation:A case study over the Yellow Mountain[J]. Trans. Atmos. Sci. (in Chinese), 37 (4):405-413, doi: 10.13878/j.cnki.dqkxxb.20121105001.
    [18] Jimenez, Pedro A, Dudhia J. 2012. A revised scheme for the WRF surface layer formulation[J]. Mon. Wea. Rev., 140:898-918, doi: 10.1175/MWR-D-11-00056.1
    [19] Kiehl J T, Briegleb B P. 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing[J]. Science, 260 (5106):311-314, doi: 10.1126/scienc.260.5106.311.
    [20] Koren I, Kaufman Y J, Remer L A, et al. 2004. Measurement of the effect of Amazon smoke on inhibition of cloud formation[J]. Science, 303 (5662):1342-1345, doi: 10.1126/science.1089424.
    [21] Koren I, Kaufman Y J, Rosenfeld D, et al, 2005. Aerosol invigoration and restructuring of Atlantic convective clouds[J]. Geophys. Res. Lett., 32 (14):L14828, doi: 10.1029/2005GL023187.
    [22] Lee S S, Donner L J, Phillips V T J, et al. 2008. The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability[J]. J. Geophy. Res., 113 (D16):D16202, doi: 10.1029/2007JD009224.
    [23] 李剑东, 毛江玉, 王维强. 2015.大气模式估算的东亚区域人为硫酸盐和黑碳气溶胶辐射强迫及其时间变化特征[J].地球物理学报, 58 (4):1103-1120. doi: 10.6038/cjg20150402

    Li Jiandong, Mao Jiangyu, Wang Weiqiang. 2015. Anthropogenic eastern Asian radiative forcing due to sulfate and black carbon aerosols and their time evolution estimated by an AGCM[J]. Chinese J. Geophys. (in Chinese), 58 (4):1103-1120, doi: 10.6038/cjg20150402.
    [24] Li G H, Wang Y, Lee K H, et al. 2009. Impacts of aerosols on the development and precipitation of a mesoscale squall line[J]. J. Geophys. Res., 114 (D17):D17205, doi: 10.1029/2008JD011581.
    [25] Li Z Q, Niu F, Fan J W, et al. 2011. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nat. Geosci., 4 (12):888-894, doi: 10.1038/ngeo1313.
    [26] Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model[J]. J. Climate Appl. Meteor., 22 (6):1065-1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
    [27] 刘红年, 张力. 2012.中国不同排放情景下人为气溶胶的气候效应[J].地球物理学报, 55 (6):1867-1875. doi: 10.6038/j.issn.0001-5733.2012.06.007

    Liu Hongnian, Zhang Li. 2012. The climate effects of anthropogenic aerosols of different emission scenarios in China[J]. Chinese J. Geophys. (in Chinese), 55 (6):1867-1875, doi: 10.6038/j.issn.0001-5733.2012.06.007.
    [28] Liu Y G, Daum P H, Mcgraw R L. 2005. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization[J]. Geophys. Res. Lett, 321 (11):161-179, doi: 10.1029/2005GL022636
    [29] Liu Y G, Daum P H. 2002. Indirect warming effect from dispersion forcing[J]. Nature, 419 (6907):580-581, doi: 10.1038/419580a.
    [30] Martin G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds[J]. J. Atmos. Sci., 51 (13):1823-1842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2
    [31] Mashayekhi R, Sloan J J. 2014. Effects of aerosols on precipitation in north-eastern North America[J]. Atmos. Chem. Phys., 14 (10):5111-5125, doi: 10.5194/acp-14-5111-2014.
    [32] Myhre G. 2009. Consistency between satellite-derived and modeled estimates of the direct aerosol effect[J]. Science, 325 (5937):187-190, doi: 10.1126/science.1174461.
    [33] Niu F, Li Z. 2011. Cloud invigoration and suppression by aerosols over the tropical region based on satellite observations[J]. Atmos. Chem. Phys. Discuss., 11:5003-5017, doi: 10.5194/acpd-11-5003-2011.
    [34] NRC (National Research Council). 2005. Committee on Radiative Forcing Effects on Climate. Radiative Forcing of Climate Change:Expanding the Concept and Addressing Uncertainties[M]. National Academy Press, Washington D.C
    [35] Ntelekos A A, Smith J A, Donner L, et al. 2009. The effects of aerosols on intense convective precipitation in the northeastern United States[J]. Quart. J. Roy. Meteor. Soc., 135 (643):1367-1391, doi: 10.1002/qj.476.
    [36] Phillips V T J, Andronache C, Sherwood S C, et al. 2005. Anvil glaciation in a deep cumulus updraught over Florida simulated with the Explicit Microphysics Model. Ⅰ:Impact of various nucleation processes[J]. Quart. J. Roy. Meteor. Soc., 131 (609):2019-2046, doi: 10.1256/qj.04.85.
    [37] Rosenfeld D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall[J]. Geophys. Res. Lett., 26 (20):3105-3108, doi: 10.1029/1999GL006066.
    [38] Rosenfeld D. 2000. Suppression of rain and snow by urban and industrial air pollution[J]. Science, 287 (5459):1793-1796, doi:10.1126/science.287. 5459.1793.
    [39] Rosenfeld D, Lensky I M. 1998. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds[J]. Bull. Amer. Meteor. Soc., 79 (11):2457-2476, doi:10.1175/1520-0477 (1998)079<2457:SBⅡPF>2.0.CO;2
    [40] Rosenfeld D, Rudich Y, Lahav R. 2001. Desert dust suppressing precipitation:A possible desertification feedback loop[J]. Proc. Natl. Acad. Sci. U S A, 98 (11):5975-5980, doi: 10.1073/pnas.101122798.
    [41] Rosenfeld D, Lohmann U, Raga G B, et al. 2008. Flood or drought:How do aerosols affect precipitation?[J]. Science, 321 (5894):1309-1313, doi: 10.1126/science.1160606.
    [42] Tewari M, Chen F, Wang W, et al. 2004. Implementation and verification of the unified NOAH land surface model in the WRF model[C]. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 11-15.
    [43] Twomey S. 1974. Pollution and the planetary albedo[J]. Atmos. Environ., 8 (12):1251-1256, doi: 10.1016/0004-6981(74)90004-3.
    [44] Twomey S. 1991. Aerosols, clouds and radiation[J]. Atmos. Environ., 25 (11):2435-2442, doi: 10.1016/0960-1686(91)90159-5.
    [45] van den Heever S C, Carrió G, Cotton W R, et al. 2006. Impacts of nucleating aerosol on Florida storms. Part Ⅰ:Mesoscale simulations[J]. J. Atmos. Sci., 63 (7):1752-1775, doi: 10.1175/JAS3713.1.
    [46] Wang Y, Lee K H, Lin Y, et al. 2014. Distinct effects of anthropogenic aerosols on tropical cyclones[J]. Nat. Climate Change, 4 (5):368-373, doi: 10.1038/nclimate2144.
    [47] 吴国雄, 李占清, 符淙斌, 等. 2015.气溶胶与东亚季风相互影响的研究进展[J].中国科学:地球科学, 45 (11):1609-1627. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511001.htm
    [48] Wu Guoxiong, Li Zhanqing, Fu Congbin, et al. 2015. Advances in studying interactions between aerosols and monsoon in China[J]. Science China Earth Sciences, 59 (1):1-16, doi: 10.1007/s11430-015-5198-z.
    [49] 肖辉, 银燕. 2011.污染气溶胶对山西一次降水过程影响的数值模拟[J].大气科学, 35 (2):235-246. doi: 10.3878/j.issn.1006-9895.2011.02.04

    Xiao Hui, Yin Yan. 2011. A numerical study of polluted aerosol effects on precipitation in Shanxi Province[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (2):235-246, doi: 10.3878/j.issn.1006-9895.2011.02.04.
    [50] Xin J Y, Wang Y S, Pan Y P, et al. 2015. The campaign on atmospheric aerosol research network of China:CARE-China[J]. Bull. Amer. Meteor. Soc., 96 (7):1137-1155, doi: 10.1175/BAMS-D-14-00039.1.
    [51] 杨磊, 银燕, 杨绍忠, 等. 2013.南京地区冬季大气冰核特征及其与气溶胶关系的研究[J].大气科学, 37 (5):983-993. doi: 10.3878/j.issn.1006-9895.2012.12098

    Yang Lei, Yin Yan, Yang Shaozhong, et al. 2013. Characteristics of atmospheric ice nuclei and its relationship to aerosols in winter in Nanjing[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (5):983-993, doi:10.3878a.issn. 1006-9895.
    [52] Zaveri R A, Peters L K. 1999. A new lumped structure photochemical mechanism for large-scale applications[J]. J. Geophys. Res., 104 (D23):30387-30415, doi: 10.1029/1999JD900876.
    [53] Zaveri R A, Easter R C, Fast J D, et al. 2008. Model for simulating aerosol interactions and chemistry (MOSAIC)[J]. J. Geophys. Res., 113 (D13):D13204, doi: 10.1029/2007JD008782.
    [54] 张小曳. 2014.中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J].气象学报, 72 (6):1108-1117. doi: 10.11676/qxxb2014.092

    Zhang Xiaoye. 2014. Characteristics of the chemical components of aerosol particles in the various regions over China[J]. Acta Meteor. Sinica (in Chinese), 72 (6):1108-1117, doi: 10.11676/qxxb2014.092.
    [55] 张小曳, 孙俊英, 王亚强, 等. 2013.我国雾-霾成因及其治理的思考[J].科学通报, 58 (13):1178-1187. doi: 10.1360/972013-150

    Zhang Xiaoye, Sun Junying, Wang Yaqiang, et al. 2013. Factors contributing to haze and fog in China[J]. Chinese Sci. Bull. (in Chinese), 58 (13):1178-1187, doi: 10.1360/972013-150.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1612
  • HTML全文浏览量:  138
  • PDF下载量:  2304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-19
  • 网络出版日期:  2017-02-25
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回