高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RegCM4模式的中国区域日尺度降水模拟误差订正

童尧 高学杰 韩振宇 徐影

童尧, 高学杰, 韩振宇, 徐影. 基于RegCM4模式的中国区域日尺度降水模拟误差订正[J]. 大气科学, 2017, 41(6): 1156-1166. doi: 10.3878/j.issn.1006-9895.1704.16275
引用本文: 童尧, 高学杰, 韩振宇, 徐影. 基于RegCM4模式的中国区域日尺度降水模拟误差订正[J]. 大气科学, 2017, 41(6): 1156-1166. doi: 10.3878/j.issn.1006-9895.1704.16275
Yao TONG, Xuejie GAO, Zhenyu HAN, Ying XU. Bias Correction of Daily Precipitation Simulated by RegCM4 Model over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1156-1166. doi: 10.3878/j.issn.1006-9895.1704.16275
Citation: Yao TONG, Xuejie GAO, Zhenyu HAN, Ying XU. Bias Correction of Daily Precipitation Simulated by RegCM4 Model over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1156-1166. doi: 10.3878/j.issn.1006-9895.1704.16275

基于RegCM4模式的中国区域日尺度降水模拟误差订正

doi: 10.3878/j.issn.1006-9895.1704.16275
基金项目: 

国家重点研发计划 2016YFC0402405

公益性行业(气象)科研专项 GYHY201306019

中国气象局气候变化专项项目 CCSF201626

详细信息
    作者简介:

    童尧, 女, 1990年出生, 硕士研究生, 主要从事区域气候模式模拟与误差订正研究。E-mail:tongyao0811@126.com

    通讯作者:

    高学杰, E-mail:gaoxuejie@mail.iap.ac.cn

  • 中图分类号: P467

Bias Correction of Daily Precipitation Simulated by RegCM4 Model over China

Funds: 

National Key Research and Development Program of China 2016YFC0402405

Special Scientific Research Fund of Meteorological Public Welfare Profession of China GYHY201306019

Climate Change Specific Fund of China CCSF201626

  • 摘要: 气候模式模拟得到的各气候变量与观测相比,总会存在一定的偏差,所得到的气候变化预估结果难以在影响评估模型中直接应用。本文尝试对一个区域气候模式(RegCM4.4)所模拟的中国区域逐日降水,基于概率分布(分位数映射)方法进行统计误差订正。在订正过程中,以模拟时段1991~2010年中的前半段(1991~2000年)作为参照时段,建立传递函数,对后一时段(2001~2010年)进行订正并检验其效果。首先对使用参数和非参数所建立的6种不同传递函数方法进行对比,发现6种方法均可明显减少降水模拟的误差,其中利用非参数转换建立传递函数的RQUANT方法效果更好。随后进一步分析了采用该方法对模式模拟降水所做订正的效果,结果表明,该方法可以明显改善对平均降水,以及降水年际变率和极端事件的模拟结果。
  • 图  1  基于格点(39.75°N,116.25°E)的夏季日降水量建立的传递函数及订正结果:(a)观测结果及6种方法所建立的传递函数,横坐标为模式原始输出值,黑色圆圈对应的纵坐标为观测值,各曲线对应的纵坐标为订正值;(b)RQUANT方法(红色)和SSPLIN方法(紫色)的订正结果,横坐标为订正值,纵坐标为观测值

    Figure  1.  Transfer functions and simulated/bias corrected precipitation at grid point (39.75°N, 116.25°E) in JJA: (a) The observations and transfer functions of six methods; (b) the bias corrected precipitation by RQUANT (red) and SSPLIN (purple) methods. In Fig. a, the x-axis represents simulations, and y-axis represents observations for the black circles and bias corrected simulations for the curves. In Fig. b, the x-and y-axis represent simulation and observation, respectively

    图  2  验证时段中,中国区域平均的冬、夏季不同百分位数区段(0~100%)及总降水量(TOT)的模拟和不同订正方法结果与观测数据的MAE及RMSE:(a)冬季MAE;(b)冬季RMSE;(c)夏季MAE;(d)夏季RMSE。MAE和RMSE在夏季90%~100%区段的模式模拟值9.4和16.0,因超出现有纵坐标范围而未给出

    Figure  2.  The mean MAE and RMSE in the simulated and bias corrected precipitation by different methods compared to observations in DJF and JJA for different percentiles (0–100%) and the total (TOT): (a) MAE in DJF; (b) RMSE in DJF; (c) MAE in JJA; (d) RMSE in JJA. The MAE and RMSE of the model simulation for 90%–100% (9.4 and 16.0, respectively) are not shown due to the values exceeding y-axis range

    图  3  验证时段中,中国地区的平均降水量(单位:mm):(a)冬季观测;(b)夏季观测;(c)冬季模拟;(d)夏季模拟;(e)冬季订正后结果;(f)夏季订正后结果

    Figure  3.  Mean precipitation over China during the validation period: (a) Observations in DJF; (b) observations in JJA; (c) simulation in DJF; (d) simulation in JJA; (e) simulation after bias correction in DJF; (f) simulation after bias correction in JJA

    图  4  验证时段中,中国地区平均降水量的相对偏差:(a)冬季模式模拟;(b)夏季模式模拟;(c)冬季订正结果;(d)夏季订正结果

    Figure  4.  Relative biases of mean precipitation over China during the validation period: (a) Simulation in DJF; (b) simulation in JJA; (c) bias correction in DJF; (d) bias correction in JJA

    图  5  图 3,但为降水的变异系数

    Figure  5.  As in Fig. 3, but for coefficient variations

    图  6  验证时段中,中国地区的连续干旱日数(CDD,单位:d)和强降水指数(SDII,单位:mm d-1)分布:(a)观测的CDD;(b)观测的SDII;(c)模式模拟的CDD;(d)模式模拟的SDII;(e)订正后的CDD结果;(f)订正后的SDII结果

    Figure  6.  The maximum number of consecutive dry days (CDD, units: d) and simple daily intensity index (SDII, units: mm d-1) over China during the validation period: (a) CDD from observations, (b) SDII from observations, (c) CDD from simulation, (d) SDII from simulation, (e) CDD after the bias correction, (f) SDII after the bias correction

    表  1  验证时段(2000年12月至2010年11月)中,中国区域平均的冬、夏季降水量的模式模拟结果和不同订正方法结果与观测间的绝对误差(MAE)和均方根误差(RMSE)

    Table  1.   MAEs (Mean absolute errors) and RMSEs (root mean square errors) in the simulated and bias corrected precipitation by different methods compared to observations in DJF (December, January, February) and JJA (June, July, August) during the validation period (from December 2000 to November 2010) over China

    MAE/mm d-1 RMSE/mm d-1
    冬季 夏季 冬季 夏季
    RegCM 0.84 1.89 1.21 3.46
    PTFe 0.07 0.44 0.14 0.74
    PTFl 0.06* 0.39* 0.12* 0.63*
    PTFp 0.08 0.50 0.16 0.83
    QUANT 0.07 0.40* 0.13 0.66
    RQUANT 0.06* 0.40* 0.12* 0.64*
    SSPLIN 0.08 0.50 0.17 0.84
    *表示误差值最小的两个结果。
    下载: 导出CSV

    表  2  模拟结果订正前后的冬、夏季平均降水量、CV及CDD、SDII指数与观测的空间相关系数

    Table  2.   Spatial correlation coefficients of simulated mean precipitation, CV (coefficient variation) in DJF and JJA, CDD (consecutive dry days), SDII (simple daily intensity index) indexes before and after bias correction with observations

    与观测的空间相关系数
    平均降水 CV CDD SDII
    冬季 夏季 冬季 夏季
    RegCM 0.28 0.62 0.20 0.63 0.40 0.62
    RQUANT 0.98 0.97 0.53 0.65 0.94 0.98
    下载: 导出CSV
  • [1] Ashfaq M, Bowling L C, Cherkauer K, et al. 2010. Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment:A case study of the United States[J]. J. Geophys. Res., 115 (D14):D14116, doi: 10.1029/2009JD012965.
    [2] Baigorria G A, Jones J W, Shin D W, et al. 2007. Assessing uncertainties in crop model simulations using daily bias-corrected regional circulation model outputs[J]. Climate Res., 34 (3):211-222, doi: 10.3354/cr00703.
    [3] Boé J, Terray L, Habets F, et al. 2007. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies[J]. Int. J. Climatol., 27 (12):1643-1655, doi: 10.1002/joc.1602.
    [4] Chen J, Brissette F P, Chaumont D, et al. 2013. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America[J]. Water Resour. Res., 49 (7):4187-4205, doi: 10.1002/wrcr.20331.
    [5] 陈杰, 许崇育, 郭生练, 等. 2006.统计降尺度方法的研究进展与挑战[J].水资源研究, 5 (4):299-313. doi: 10.12677/JWRR.2016.54037

    Chen Jie, Xu Chongyu, Guo Shenglian, et al. 2016. Progress and challenge in statistically downscaling climate model outputs[J]. Journal of Water Resources Research, 5 (4):299-313, doi: 10.12677/JWRR.2016.54037.
    [6] Christensen J H, Boberg F, Christensen O B, et al. 2008. On the need for bias correction of regional climate change projections of temperature and precipitation[J]. Geophys. Res. Lett., 35 (20):L20709, doi: 10.1029/2008GL035694.
    [7] 董思言, 熊喆, 延晓冬. 2014. RIEMS2.0模式提高分辨率对中国气温模拟能力的影响[J].气候与环境研究, 19 (5):627-635. doi: 10.3878/j.issn.1006-9585.2013.13088

    Dong Siyan, Xiong Zhe, Yan Xiaodong. 2014. Influence of increasing RIEMS2.0 model's resolution on mean air temperature over China[J]. Climatic and Environmental Research, 19 (5):627-635, doi: 10.3878/j.issn.1006-9585.2013.13088.
    [8] Dosio A, Paruolo P. 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models:Evaluation on the present climate[J]. J. Geophys. Res., 116 (D16):D16106, doi: 10.1029/2011JD015934.
    [9] Gao X J, Giorgi F. 2017. Use of the RegCM system over East Asia:Review and perspectives[J]. Egineering, in press.
    [10] Gao X J, Zhao Z C, Ding Y H, et al. 2001. Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Adv. Atmos. Sci., 18 (6):1224-1230, doi: 10.1007/s00376-001-0036-y.
    [11] Gao X J, Shi Y, Zhang D F, et al. 2012. Uncertainties in monsoon precipitation projections over China:Results from two high-resolution RCM simulations[J]. Climate Res., 52:213-226, doi: 10.3354/cr01084.
    [12] Gao X J, Wang M L, Giorgi F. 2013. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J]. Atmos. Oceanic Sci. Lett., 6 (5):381-386, doi: 10.3878/j.issn.1674-2834.13.0029.
    [13] Gao X J, Shi Y, Han Z Y, et al. 2017. Performance of RegCM4 over major river basins in China[J]. Adv. Atmos. Sci., 34 (3):441-455, doi: 10.1007/s00376-016-6179-7.
    [14] Giorgi F, Jones C, Asrar G R. 2009. Addressing climate information needs at the regional level:The CORDEX framework[J]. WMO Bull., 58 (3):175-183. https://public.wmo.int/en/bulletin/addressing-climate-information-needs-regional-level-cordex-framework
    [15] Giorgi F, Coppola E. 2010. Does the model regional bias affect the projected regional climate change? An analysis of global model projections[J]. Climatic Change, 100 (3-4):787-795, doi: 10.1007/s10584-010-9864-z.
    [16] Giorgi F, Coppola E, Solmon F, et al. 2012. RegCM4:Model description and preliminary tests over multiple CORDEX domains[J]. Climate Res., 52:7-29, doi: 10.3354/cr01018.
    [17] Gudmundsson L, Bremnes J B, Haugen J E, et al. 2012. Technical note:Downscaling RCM precipitation to the station scale using statistical transformations-A comparison of methods[J]. Hydrology and Earth System Sciences, 16 (9):3383-3390, doi: 10.5194/hess-16-3383-2012.
    [18] 华文剑, 陈海山, 李兴. 2015.未来土地利用变化影响中国区域气候的数值模拟[J].中国科学:地球科学, 45 (7):1034-1042. doi: 10.1007/s11430-015-5082-x

    Hua Wenjian, Chen Haishan, Li Xing. 2015. Effects of future land use change on the regional climate in China[J]. Science China:Earth Sciences, 58 (10):1840-1848, doi: 10.1007/s11430-015-5082-x.
    [19] Ines A V M, Hansen J W. 2006. Bias correction of daily GCM rainfall for crop simulation studies[J]. Agricultural and Forest Meteorology, 138 (1-4):44-53, doi: 10.1016/j.agrformet.2006.03.009.
    [20] IPCC. 2015. Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Regional Climate Projections and Their Use in Impacts and Risk Analysis Studies[M]. Stocker T F, Qin D, Plattner G K, et al., Eds. Bern:University of Bern, 171pp
    [21] Lafon T, Dadson S, Buys G, et al. 2013. Bias correction of daily precipitation simulated by a regional climate model:A comparison of methods[J]. Int. J. Climatol., 33 (6):1367-1381, doi: 10.1002/joc.3518.
    [22] Leander R, Buishand T A. 2007. Resampling of regional climate model output for the simulation of extreme river flows[J]. J. Hydrol., 332 (3-4):487-496, doi: 10.1016/j.jhydrol.2006.08.006.
    [23] Lenderink G, Buishand A, van Deursen W. 2007. Estimates of future discharges of the river Rhine using two scenario methodologies:Direct versus delta approach[J]. Hydrology and Earth System Sciences, 11 (3):1145-1159, doi: 10.5194/hess-11-1145-2007.
    [24] Li C, Sinha E, Horton D E, et al. 2014. Joint bias correction of temperature and precipitation in climate model simulations[J]. J. Geophys. Res., 119 (23):13, 153-13, 162, doi: 10.1002/2014JD022514.
    [25] 刘绿柳, 任国玉. 2012.百分位统计降尺度方法及在GCMs日降水订正中的应用[J].高原气象, 31 (3):715-722. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201203014.htm

    Liu Lüliu, Ren Guoyu. 2012. Percentile statistical downscaling method and its application in the correction of GCMs daily precipitation in China[J]. Plateau Meteor., 31 (3):715-722. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201203014.htm
    [26] Maraun D, Wetterhall F, Ireson A M, et al. 2010. Precipitation downscaling under climate change:Recent developments to bridge the gap between dynamical models and the end user[J]. Rev. Geophys., 48 (3):RG3003, doi: 10.1029/2009RG000314.
    [27] Piani C, Haerter J O, Coppola E. 2010a. Statistical bias correction for daily precipitation in regional climate models over Europe[J]. Theor. Appl. Climatol., 99 (1-2):187-192, doi: 10.1007/s00704-009-0134-9.
    [28] Piani C, Weedon G P, Best M, et al. 2010b. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models[J]. J. Hydrol., 395 (3-4):199-215, doi: 10.1016/j.jhydrol.2010.10.024.
    [29] 石英, 高学杰, 吴佳, 等. 2010.华北地区未来气候变化的高分辨率数值模拟[J].应用气象学报, 21 (5):580-589. doi: 10.3969/j.issn.1001-7313.2010.05.007

    Shi Ying, Gao Xuejie, Wu Jia, et al. 2010. Simulating future climate changes over North China with a high resolution regional climate model[J]. J. Appl. Meteor. Sci., 21 (5):580-589, doi: 10.3969/j.issn.1001-7313.2010.05.007.
    [30] Simmons A J, Uppala S, Dee D, et al. 2007. ERA-Interim:New ECMWF reanalysis products from 1989 onwards[R]. ECMWF Newsletter No.110, ECMWF, 11pp. Reading, United Kingdom
    [31] 宋艳玲. 2007. 现代及未来气候变化对我国冬小麦的影响[D]. 中国科学院大气物理研究所博士学位论文. http://d.wanfangdata.com.cn/Thesis/Y1630761

    Song Yanling. 2007. Effects of climate change on winter wheat in China[D]. Ph. D. dissertation, the Institute of Atmospheric Physics, Chinese Academy of Sciences. http://d.wanfangdata.com.cn/Thesis/Y1630761
    [32] 陶苏林, 申双和, 李雨鸿, 等. 2016.气候模拟数据订正方法在作物气候生产潜力预估中的应用——以江苏冬小麦为例[J].中国农业气象, 37 (2):174-187. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201602007.htm

    Tao Sulin, Shen Shuanghe, Li Yuhong, et al. 2016. Application of bias correction method for simulated climate data in projection of crop climatic potential productivity-A case study of winter wheat in Jiangsu[J]. Chinese Journal of Agrometeorology, 37 (2):174-187. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201602007.htm
    [33] Teutschbein C, Seibert J. 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies:Review and evaluation of different methods[J]. J. Hydrol., 456-457:12-29, doi: 10.1016/j.jhydrol.2012.05.052.
    [34] Themeßl M J, Gobiet A, Heinrich G. 2012. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal[J]. Climatic Change, 112 (2):449-468, doi:10. 1007/s10584-011-0224-4.
    [35] 田芝平, 姜大膀. 2013.不同分辨率CCSM4对东亚和中国气候模拟能力分析[J].大气科学, 37 (1):171-186. doi: 10.3878/j.issn.1006-9895.2012.12050

    Tian Zhiping, Jiang Dabang. 2013. Evaluation of the performance of low-to high-resolution CCSM4 over East Asia and China[J]. Journal of Atmospheric Sciences, 37 (1):171-186, doi: 10.3878/j.issn.1006-9895.2012.12050.
    [36] Wood A W, Maurer E P, Kumar A, et al. 2002. Long-range experimental hydrologic forecasting for the eastern United States[J]. J. Geophys. Res., 107 (D20):ACL 6-1-ACL 6-15, doi: 10.1029/2001JD000659.
    [37] Wood A W, Leung L R, Sridhar V, et al. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs[J]. Climatic Change, 62 (1-3):189-216, doi:10.1023/B:CLIM. 0000013685.99609.9e.
    [38] 吴佳, 高学杰. 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56 (4):1102-1111. doi: 10.6038/cjg20130406

    Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 56 (4):1102-1111, doi: 10.6038/cjg20130406.
    [39] 吴佳, 高学杰, 石英, 等. 2011.新疆21世纪气候变化的高分辨率模拟[J].冰川冻土, 33 (3):479-487. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103004.htm

    Wu Jia, Gao Xuejie, Shi Ying, et al. 2011. Climate change over Xinjiang region in the 21st century simulated by a high resolution regional climate model[J]. Journal of Glaciology and Geocryology, 33 (3):479-487. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103004.htm
    [40] Wu J, Gao X J, Giorgi F, et al. 2017. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset[J]. Int. J. Climatol., doi: 10.1002/joc.5038.
    [41] Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Adv. Atmos. Sci., 26 (4):763-772, doi: 10.1007/s00376-009-9029-z.
    [42] 许吟隆, Jones R. 2004.利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J].中国农业气象, 25 (1):5-9. doi: 10.3969/j.issn.1000-6362.2004.01.002

    Xu Yinlong, Jones R. 2004. Validating PRECIS with ECMWF reanalysis data over China[J]. Chinese Journal of Agrometeorology, 25 (1):5-9, doi: 10.3969/j.issn.1000-6362.2004.01.002.
    [43] Yang H L, Xu Y L, Zhang L, et al. 2010a. Projected change in heat waves over China using the PRECIS climate model[J]. Climate Res., 42 (1):79-88, doi: 10.3354/cr00860.
    [44] Yang W, Andréasson J, Graham L P, et al. 2010b. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies[J]. Hydrol. Res., 41 (3-4):211-229. doi: 10.2166/nh.2010.004
    [45] Yu E T, Wang H J, Sun J Q. 2010. A quick report on a dynamical downscaling simulation over China using the nested model[J]. Atmos. Oceanic Sci. Lett., 3 (6):325-329, doi:10.1080/16742834.2010. 11446886.
    [46] Zhou B T, Xu Y, Wu J, et al. 2015. Changes in temperature and precipitation extreme indices over China:Analysis of a high-resolution grid dataset[J]. Int. J. Climatol., 36 (3):1051-1066, doi: 10.1002/joc.4400/abstract.
    [47] 周林, 潘婕, 张镭, 等. 2014a.气候模拟日降水量的统计误差订正分析——以上海为例[J].热带气象学报, 30 (1):137-144. doi: 10.3969/j.issn.1004-4965.2014.01.015

    Zhou Lin, Pan Jie, Zhang Lei, et al. 2014a. Analysis on statistical bias correction of daily precipitation simulated by regional climate model[J]. Journal of Tropical Meteorology, 30 (1):137-144, doi:10.3969/j.issn.1004-4965. 2014.01.015.
    [48] 周林, 潘婕, 张镭, 等. 2014b.概率调整法在气候模式模拟降水量订正中的应用[J].应用气象学报, 25 (3):302-311. doi: 10.3969/j.issn.1001-7313.2014.03.007

    Zhou Lin, Pan Jie, Zhang Lei, et al. 2014b. Correction based on distribution scaling for precipitation simulated by climate model[J]. J. Appl. Meteor. Sci., 25 (3):302-311, doi: 10.3969/j.issn.1001-7313.2014.03.007.
    [49] Zou L W, Zhou T J. 2013. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario:Comparison between RCM downscaling and the driving GCM[J]. Adv. Atmos. Sci., 30 (3):806-818, doi: 10.1007/s00376-013-2209-x.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2503
  • HTML全文浏览量:  1
  • PDF下载量:  1643
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 网络出版日期:  2017-04-12
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回