Dynamical Downscaling of Tropical Cyclone and Associated Rainfall Simulations of FGOALS-g2
-
摘要: 热带气旋是气候模拟关注的重要对象,但是,由于当前的气候系统模式分辨率较低,难以合理再现热带气旋分布特征,因此,动力降尺度就成为一种有效的手段。本文使用区域气候模式RegCM3,对中国科学院大气物理研究所气候系统模式FGOALS-g2的模拟结果进行动力降尺度,基于热带气旋路径追踪法,从热带气旋的路径、强度和降水三个方面,检验了动力降尺度在热带气旋模拟能力上的增值。结果表明,动力降尺度结果大幅提升了热带气旋路径频率的模拟,较之全球模式,其与观测的路径频率分布的空间相关系数从0.57提升至0.74;区域模式模拟的热带气旋强度与观测更为一致,全球模式难以模拟40 m s−1以上风速的热带气旋,区域模式能够模拟风速为60 m s−1的热带气旋;在热带气旋降水方面,降尺度后的热带气旋降水贡献率和平均热带气旋降水强度均有所改善,在西北太平洋区域较之全球模式,区域模式将热带气旋降水贡献率和降水强度提高了10%和4.7 mm d−1。动力降尺度后TC(tropical cyclone)的模拟技巧得到提升的区域为西北太平洋区域,但在中国南海区域,技巧提升的不显著甚至有所下降。关于动力降尺度结果在西北太平洋区域的技巧提升,分析表明能够更好体现CISK(Conditional Instability of the Second Kind)机制是主要原因,区域模式模拟的水汽增多、正涡度增强、上升运动增强而垂直风切变减弱都有显著贡献。Abstract: Tropical cyclone (TC) plays an important role in climate research.However, due to the relatively low model resolution, there remain challenges in simulating the distribution of TC by using global climate models.Dynamical downscaling has been a useful tool for TC research.In this paper, a regional climate model RegCM3 was used to dynamically downscale the historical TC simulation of FGOALS-g2(grid-point version 2 of Flexible Global Ocean-Atmosphere-Land System model), a global climate system model developed by LASG/IAP.A tropical cyclone track detection method was applied to reveal the added value of dynamical downscaling in simulating track distribution, intensity and rainfall of TCs.The result of dynamical downscaling shows distinct improvements in simulating the TC distribution, intensity and associated rainfall.The pattern correlation coefficient of TC track distribution is improved from 0.53 to 0.74 by the regional model.The underestimated TC intensity from FGOALS-g2 simulation is enhanced in RegCM3(Version 3 of the Regional Climate Model) by 20 m s−1.In addition, the total rainfall contribution and intensity are enhanced by 10% and 4.7 mm d−1 in RegCM3 compared to that in the global model over the western North Pacific region.In addition to the influence of increasing model resolution, large-scale variables such as increased moisture, enhanced relative vorticity and ascending motion, and weakened vertical wind shear are responsible for the improvements of TC simulating skill in RegCM3 as a result of better reproduction of CISK (Conditional Instability of the Second Kind) mechanism.
-
图 1 1986~2005年东亚区域热带气旋路径:(a)观测(IBTrACS资料);(b)JRA55数据;(c)FGOALS-g2;(d)RegCM3。填色为根据Saffir-Simpson台风风速进行的划分:热带低压(TD)、热带风暴(TS)、等级1~5(C1到C5)
Figure 1. Tropical cyclone (TC) tracks from 1986 to 2005 derived from (a) observations (IBTrACS), (b) JRA-55 data, (c) FGOALS-g2 model, and (d) RegCM3 model over the western North Pacific. The intensities of TCs (colored tracks) are categorized based on the Saffir-Simpson hurricane wind scale [tropical depression (TD), tropical storms (TS), and the categories 1-5 (C1–C5)]
图 3 1986~2005年东亚区域热带气旋频率:(a)逐月分布和(b)强度分布。黑色、灰色、红色和蓝色分别为观测(IBTrACS资料)、JRA55资料、FGOALS-g2模式和RegCM3模式结果。强度根据Saffir-Simpson台风风速进行划分
Figure 3. (a) Seasonal cycle and (b) intensity distribution of tropical cyclone frequency over the western North Pacific during 1986–2005 [black, gray, red, and blue denote the results from observations (IBTrACS), JRA55 data, FGOALS-g2 model, and RegCM3 model respectively]. The intensity of TCs is categorized based on the Saffir-Simpson hurricane wind Scale
图 2 1986~2005年东亚区域热带气旋路径频率(单位:a-1):(a)观测(IBTrACS资料);(b)JRA55;(c)FGOALS-g2;(d)RegCM3(等值线为RegCM3减去FGOALS-g2结果;等值线间隔0.5 a-1,正值实线,负值虚线,零值省略)
Figure 2. Frequency of tropical cyclone occurrence (shaded; units: a-1) from 1986 to 2005 over the western North Pacific derived from (a) observations (IBTrACS), (b) JRA-55 data, (c) FGOALS-g2 model, and (d) RegCM3 model. The contours in (d) denote the difference between RegCM3 and FGOALS-g2 (contour interval is 0.5 a-1, solid and dashed contours denote positive and negative values respectively, and zero value is omitted)
图 4 热带气旋最大风速(单位:m s-1)和最小中心气压(单位:hPa)的散点图。黑色、红色和蓝色点(曲线)分别为观测、FGOALS-g2模式和RegCM3模式中的热带气旋(最大风速和最小气压最小二阶拟合曲线)。散点为每个TC在强度最大时的结果
Figure 4. Scatter diagram of tropical cyclone maximum wind speeds (units: m s-1) vs central minimum pressure (units: hPa). Dots denote TC occurrences from observations (black), FGOALS-g2 model (red), and RegCM3 model (blue). The smooth curves are least squares quadratic best-fit lines associated with the data for the various cases
图 5 1997~2005年东亚区域热带气旋6~10月的相对降水贡献:(a)观测(GPCP-1dd资料);(b)JRA55;(a)FGOALS-g2;(a)RegCM3
Figure 5. Distributions of relative rainfall contributions by tropical cyclones during June–October from 1986 to 2005 over the western North Pacific derived from (a) observations (GPCP-1dd), (b) JRA55 data, (c) FGOALS-g2 model, and (d) RegCM3 model
图 6 1997~2005年东亚区域热带气旋6~10月的平均热带气旋降水强度(单位:mm d-1):(a)观测(GPCP-1dd资料);(b)JRA55;(c)FGOALS-g2;(d)RegCM3
Figure 6. Distributions of rainfall intensities associated with tropical cyclones (units: mm d-1) during June–October from 1986 to 2005 over the western North Pacific derived from (a) observations (GPCP-1dd), (b) JRA55 data, (c) FGOALS-g2 model, and (d) RegCM3 model
图 7 1986~2005年6~10月850 hPa比湿(SH;第一行;单位:g kg-1)、850 hPa相对涡度(VOR;第二行;单位:10-5 s-1)、500 hPa垂直速度(WP;第三行;单位:Pa s-1)以及850 hPa及200 hPa间的垂直风切变(VWS;第四行;单位:m s-1):JRA55数据(左列);FGOALS-g2模拟结果减去JRA55数据(中间列);RegCM3模拟结果减去JRA55数据(右列)。右列图黑色等值线为RegCM3减去FGOALS-g2结果(实线为正,虚线为负),等值线间隔分别为(c)0.2 g kg-1、(f)0.4×10-5 s-1、(i)0.02 Pa s-1以及(l)2.0 m s-1
Figure 7. Large-scale variables related to tropical cyclone genesis during June–October from 1986 to 2005 over the western North Pacific: Specific humidity (SH; top row; shaded; units: g kg-1) and relative vorticity at 850 hPa (VOR; second row; shaded; units: 10-5 s-1), vertical motion at 500 hPa (WP; third row; shaded; units: Pa s-1), vertical wind shear (VWS; bottom row; shaded; units: m s-1) from JRA55 data (left column), differences between FGOALS-g2 and JRA55 (middle column), and differences between RegCM3 and JRA55 (right column). The contours in the right column denote the differences between RegCM3 and FGOALS-g2 at intervals of (c) 0.2 g kg-1, (f) 0.4×10-5 s-1, (i) 0.02 Pa s-1, (l) 2.0 m s-1, and solid and dashed contours denote positive and negative values, respectively
图 8 1986~2005年6~10月850 hPa水汽通量散度[∇·(Vq),左列,简称Div;单位:10-8 s-1];整层积分的非绝热加热率($ \left\langle {{Q_1}} \right\rangle $,右列,简称Q1;单位:K kg s-1 m-2):(a、b)JRA55、(c、d)FGOALS-g2和(e、f)RegCM3的模式结果
Figure 8. Moisture flux divergence (∇·(Vq), left column, Div; units: 10-8s-1) and vertically integrated total diabatic heating ($ \left\langle {{Q_1}} \right\rangle $, right column, Q1; units: K kg s-1m-2) during June–October from 1986 to 2005 over the western North Pacific derived from (a, b) JRA55 data, (c, d) FGOALS-g2 model, and (e, f) RegCM3 model
表 1 区域加权平均的热带气旋路径频率(单位:a-1)
Table 1. Regional-weighted-average tropical cyclone track frequency (units: a-1)
热带气旋路径频率/ a-1 观测 JRA55数据 FGOALS-g2 RegCM3 WNP 3.1 3.6 1.4 3.2 SCS 2.9 2.8 1.9 1.5 EYS 1.2 1.1 0.3 0.6 JPS 1.0 1.0 0.0 0.2 表 2 区域加权平均的热带气旋降水贡献率及降水强度
Table 2. Regional weighted averages of rainfall contribution and rainfall intensity associated with tropical cyclones
TC降水贡献(平均降水强度/mm d-1) 观测 JRA55数据 FGOALS-g2 RegCM3 WNP 17.2%(9.1) 18.3%(8.5) 4.1%(3.1) 14.1%(7.8) SCS 10.7%(6.5) 13.4%(6.7) 6.1%(3.3) 4.5%(1.9) EYS 8.9%(4.4) 3.6%(4.4) 1.9%(0.8) 7.9%(2.6) JPS 11.3%(5.3) 2.2%(0.8) 0.8%(0.5) 3.2%(1.1) -
[1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. J. Hydrometeorol., 4 (6):1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2. [2] Bender M A, Knutson T R, Tuleya R E, et al. 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes[J]. Science, 327(5964):454-458, doi: 10.1126/science.1180568. [3] Bengtsson L, Botzet M, Esch M. 1995. Hurricane-type vortices in a general circulation model[J]. Tellus A, 47 (2):175-196, doi:10.3402/tellusa.v47i2. 11500. [4] 丛春华, 陈联寿, 雷小途, 等. 2011.台风远距离暴雨的研究进展[J].热带气象学报, 27 (2):264-270. doi: 10.3969/j.issn.1004-4965.2011.02.016Cong Chunhua, Chen Lianshou, Lei Xiaotu, et al. 2011. An overview on the study of tropical cyclone remote rainfall[J]. J. Trop. Meteor. (in Chinese), 27 (2):264-270, doi: 10.3969/j.issn.1004-4965.2011.02.016. [5] Craig G C, Gray S L. 1996. CISK or WISHE as the mechanism for tropical cyclone intensification[J]. J. Atmos. Sci., 53 (23):3528-3540, doi:10. 1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2. [6] Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model[R]. NCAR Technical Note NCAR/TN-387+ STR. Boulder, Colorado: National Center for Atmospheric Research, Climate and Global Dynamics Division, doi: 10.5065/D67W6959. [7] 端义宏, 余晖, 伍荣生. 2005.热带气旋强度变化研究进展[J].气象学报, 63 (5):636-645. doi: 10.3321/j.issn:0577-6619.2005.05.009Duan Yihong, Yu Hui, Wu Rongsheng. 2005. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteor. Sinica (in Chinese), 63 (5):636-645, doi: 10.3321/j.issn:0577-6619.2005.05.009. [8] Ebita A, Kobayashi S, Ota Y, et al. 2011. The Japanese 55-year reanalysis "JRA-55":An interim report[J]. SOLA, 7:149-152, doi:10.2151/sola. 2011-038. [9] Emanuel K A. 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proc. Natl. Acad. Sci. USA, 110 (30):12219-12224, doi: 10.1073/pnas.1301293110. [10] Gao X J, Pal J S, Giorgi F. 2006. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation[J]. Geophys. Res. Lett., 33 (3), doi: 10.1029/2005GL024954. [11] Gentry M S, Lackmann G M. 2010. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Mon. Wea. Rev., 138 (3):688-704, doi: 10.1175/2009MWR2976.1. [12] Gray W M. 1998. The formation of tropical cyclones[J]. Meteor. Atmos. Phys., 67 (1-4):37-69, doi: 10.1007/BF01277501. [13] Grell G A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations[J]. Mon. Wea. Rev., 121 (3):764-787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2. [14] Hagos S, Zhang C D, Tao W K, et al. 2010. Estimates of tropical diabatic heating profiles:Commonalities and uncertainties[J]. J. Climate, 23(3):542-558, doi: 10.1175/2009JCLI3025.1. [15] Holtslag A A M, De Bruijn E I F, Pan H L. 1990. A high resolution air mass transformation model for short-range weather forecasting[J]. Mon. Wea. Rev., 118 (8):1561-1575, doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2. [16] 黄安宁, 张耀存, 朱坚. 2009.中国夏季不同强度降水模拟对不同积云对流参数化方案的敏感性研究[J].大气科学, 33 (6):1212-1224. doi: 10.3878/j.issn.1006-9895.2009.06.08Huang Anning, Zhang Yaocun, Zhu Jian. 2009. Sensitivity of simulation of different intensity of summer precipitation over China to different cumulus convection parameterization schemes[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (6):1212-1224, doi: 10.3878/j.issn.1006-9895.2009.06.08. [17] Huffman G J, Adler R F, Bolvin D T, et al. 2009. Improving the global precipitation record:GPCP version 2.1[J]. Geophys. Res. Lett., 36 (17), doi: 10.1029/2009GL040000. [18] 蒋小平, 刘春霞, 齐义泉. 2009.利用一个海气耦合模式对台风Krovanh的模拟[J].大气科学, 33 (1):99-108. doi: 10.3878/j.issn.1006-9895.2009.01.09Jiang Xiaoping, Liu Chunxia, Qi Yiquan. 2009. The simulation of typhoon Krovanh using a coupled air-sea model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (1):99-108, doi: 10.3878/j.issn.1006-9895.2009.01.09. [19] Kiehl J T, Hack J J, Bonan G B, et al. 1996. Description of the NCAR community climate model (CCM3)[R]. NCAR Technical Note NCAR/TN-420+STR. Boulder, CO: National Center for Atmospheric Research, Climate and Global Dynamics Division, doi: 10.5065/D6FF3Q99. [20] Knapp K R, Kruk M C, Levinson D H, et al. 2010. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data[J]. Bull. Amer. Meteor. Soc., 91 (3):363-376, doi: 10.1175/2009BAMS2755.1. [21] Knutson T R, Sirutis J J, Vecchi G A, et al. 2013. Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity:CMIP3 and CMIP5 model-based scenarios[J]. J. Climate, 26 (17):6591-6617, doi: 10.1175/JCLI-D-12-00539.1. [22] Knutson T R, Sirutis J J, Zhao M, et al. 2015. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios[J]. J. Climate, 28 (18):7203-7224, doi: 10.1175/JCLI-D-15-0129.1. [23] Kobayashi C, Sugi M. 2004. Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model[J]. Climate Dyn., 23 (2):165-176, doi: 10.1007/s00382-004-0427-8. [24] Li L J, Lin P F, Yu Y Q, et al. 2013a. The flexible global ocean-atmosphere-land system model, Grid-point Version 2:FGOALS-g2[J]. Adv. Atmos. Sci., 30 (3):543-560, doi: 10.1007/s00376-012-2140-6. [25] Li L J, Wang B, Dong L, et al. 2013b. Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2)[J]. Adv. Atmos. Sci., 30 (3):855-867, doi: 10.1007/s00376-013-2157-5. [26] 林惠娟, 张耀存. 2004.影响我国热带气旋活动的气候特征及其与太平洋海温的关系[J].热带气象学报, 20 (2):218-224. doi: 10.3969/j.issn.1004-4965.2004.02.015Lin Huijuan, Zhang Yaocun. 2004. Climatic features of the tropical cyclone influencing China and its relationship with the sea surface temperature in the Pacific Ocean[J]. J. Trop. Meteor. (in Chinese), 20 (2):218-224, doi: 10.3969/j.issn.1004-4965.2004.02.015. [27] 刘磊, 费建芳, 林霄沛, 等. 2011.海气相互作用对"格美"台风发展的影响研究[J].大气科学, 35 (3):444-456. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20110306&journal_id=dqkxLiu Lei, Fei Jianfang, Lin Xiaopei, et al. 2011. Effect of air-sea interaction on typhoon Kaemi[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(3):444-456. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20110306&journal_id=dqkx [28] 刘磊, 费建芳, 马占宏, 等. 2017.区域台风-海洋耦合模式的构建及应用研究[J].大气科学, 41 (1):178-188. doi: 10.3878/j.issn.1006-9895.1604.15327Liu Lei, Fei Jianfang, Ma Zhanhong, et al. 2017. Construction and application of a regional typhoon-ocean coupled model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41 (1):178-188, doi:10.3878/j.issn.1006-9895. 1604.15327. [29] Liu S Y, Gao W, Liang X Z. 2013. A regional climate model downscaling projection of China future climate change[J]. Climate Dyn., 41 (7-8):1871-1884, doi: 10.1007/s00382-012-1632-5. [30] 陆艳艳, 张耀存. 2007. P-σ区域气候模式对东亚副热带西风急流的数值模拟[J].高原气象, 26 (2):213-224. doi: 10.3321/j.issn:1000-0534.2007.02.001Lu Yanyan, Zhang Yaocun. 2007. Numerical simulation of East Asian subtropical westerly jet using regional climate model with P-σ mixed coordinate[J]. Plateau Meteor. (in Chinese), 26 (2):213-224, doi: 10.3321/j.issn:1000-0534.2007.02.001. [31] Manabe S, Holloway Jr J L, Stone H M. 1970. Tropical circulation in a time-integration of a global model of the atmosphere[J]. J. Atmos. Sci., 27 (4):580-613, doi:10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2. [32] Mcbride J L. 1995. Tropical cyclone formation, chapter 3, global perspectives on tropical cyclones[R]. Technol. Doc. WMO/TD No 693. Geneva: World Meteorological Organization, 63-105. [33] Murakami H, Sugi M. 2010. Effect of model resolution on tropical cyclone climate projections[J]. SOLA, 6:73-76, doi: 10.2151/sola.2010-019. [34] Murakami H, Wang Y Q, Yoshimura H, et al. 2012. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM[J]. J. Climate, 25 (9):3237-3260, doi: 10.1175/JCLI-D-11-00415.1. [35] Murakami H, Wang B, Li T, et al. 2013. Projected increase in tropical cyclones near Hawaii[J]. Nat. Climate Change, 3 (8):749-754, doi: 10.1038/nclimate1890. [36] Murakami H, Hsu P C, Arakawa O, et al. 2014. Influence of model biases on projected future changes in tropical cyclone frequency of occurrence[J]. J. Climate, 27(5):2159-2181, doi: 10.1175/JCLI-D-13-00436.1. [37] Murakami H. 2014. Tropical cyclones in reanalysis data sets[J]. Geophys. Res. Lett., 41(6):2133-2141, doi: 10.1002/2014GL059519. [38] Nigam S, Chung C, DeWeaver E. 2000. ENSO diabatic heating in ECMWF and NCEP-NCAR reanalyses, and NCAR CCM3 simulation[J]. J. Climate, 13 (17):3152-3171, doi:10.1175/1520-0442(2000)013<3152:EDHIEA>2.0.CO;2. [39] Pal J S, Giorgi F, Bi X Q, et al. 2007. Regional climate modeling for the developing world:The ICTP RegCM3 and RegCNET[J]. Bull. Amer. Meteor. Soc., 88 (9):1395-1409, doi: 10.1175/BAMS-88-9-1395. [40] 石英, 高学杰. 2008.温室效应对我国东部地区气候影响的高分辨率数值试验[J].大气科学, 32 (5):1006-1018. doi: 10.3878/j.issn.1006-9895.2008.05.02Shi Ying, Gao Xuejie. 2008. Influence of greenhouse effect on eastern China climate simulated by a high resolution regional climate model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (5):1006-1018, doi: 10.3878/j.issn.1006-9895.2008.05.02. [41] 石英, 高学杰, Giorgi F, 等. 2010.全球变暖背景下中国区域不同强度降水事件变化的高分辨率数值模拟[J].气候变化研究进展, 6 (3):164-169. doi: 10.3969/j.issn.1673-1719.2010.03.002Shi Ying, Gao Xuejie, Giorgi F, et al. 2010. High resolution simulation of changes in different-intensity precipitation events over China under global warming[J]. Adv. Climate Change Res. (in Chinese), 6(3):164-169, doi: 10.3969/j.issn.1673-1719.2010.03.002. [42] Strachan J, Vidale P L, Hodges K, et al. 2013. Investigating global tropical cyclone activity with a hierarchy of AGCMs:The role of model resolution[J]. J. Climate, 26 (1):133-152, doi: 10.1175/JCLI-D-12-00012.1. [43] Walsh K J E, Fiorino M, Landsea C W, et al. 2007. Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses[J]. J. Climate, 20 (10):2307-2314, doi: 10.1175/JCLI4074.1. [44] 王世玉, 张耀存. 1999.不同区域气候模式对中国东部区域气候模拟的比较[J].高原气象, 18 (1):28-38. doi: 10.3321/j.issn:1000-0534.1999.01.004Wang Shiyu, Zhang Yaocun. 1999. Simulation of regional climate over eastern China with different regional climate models[J]. Plateau Meteor. (in Chinese), 18 (1):28-38, doi: 10.3321/j.issn:1000-0534.1999.01.004. [45] 姚隽琛, 周天军, 邹立维. 2015.区域耦合模式FROALS模拟的西北太平洋热带气旋潜势分布与年际变率:耦合与非耦合试验比较[J].大气科学, 39 (4):802-814. doi: 10.3878/j.issn.1006-9895.1411.14209Yao Junchen, Zhou Tianjun, Zou Liwei. 2015. Distribution and interannual variability of tropical cyclone genesis over the western North Pacific simulated by a regional coupled model-FROALS:Comparison with an uncoupled model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (4):802-814, doi: 10.3878/j.issn.1006-9895.1411.14209. [46] Zeng X B, Zhao M, Dickinson R E. 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data[J]. J. Climate, 11(10):2628-2644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2. [47] 张冬峰, 高学杰, 赵宗慈, 等. 2005. RegCM3区域气候模式对中国气候的模拟[J].气候变化研究进展, 1 (3):119-121. doi: 10.3969/j.issn.1673-1719.2005.03.005Zhang Dongfeng, Gao Xuejie, Zhao Zongci, et al. 2005. Simulation of climate in China by RegCM3 model[J]. Adv. Climate Change Res. (in Chinese), 1 (3):119-121, doi: 10.3969/j.issn.1673-1719.2005.03.005. [48] 张冬峰, 徐影, 刘向文. 2016. RegCM4.4对中国夏季气候的回报和2014年预测[J].气象与环境科学, 39 (2):104-112. doi: 10.16765/j.cnki.1673-7148.2016.02.015Zhang Dongfeng, Xu Ying, Liu Xiangwen. 2016. Hindcast experiments of the summer climate over China by RegCM4.4 and prediction about 2014[J]. Meteor. Environ. Sci. (in Chinese), 39 (2):104-112, doi: 10.16765/j.cnki.1673-7148.2016.02.015. [49] Zhao M, Held I M, Lin S J, et al. 2009. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM[J]. J. Climate, 22 (24):333-363, doi: 10.1175/2009JCLI3049.1. [50] 钟中, 苏炳凯, 赵鸣, 等. 2004.区域气候模式中侧边界地形缓冲区作用的数值试验[J].高原气象, 23 (1):48-54. doi: 10.3321/j.issn:1000-0534.2004.01.007Zhong Zhong, Su Bingkai, Zhao Ming, et al. 2004. Numerical experiments on the effects of lateral boundary topographic buffer zone in regional climate model[J]. Plateau Meteor. (in Chinese), 23 (1):48-54, doi:10.3321/j.issn:1000-0534.2004. 01.007. [51] Zhong Z. 2006. A possible cause of a regional climate model's failure in simulating the East Asian summer monsoon[J]. Geophys. Res. Lett., 33 (24), doi: 10.1029/2006GL027654. [52] Zhong Z, Wang X T, Min J Z. 2010. Testing the influence of western Pacific subtropical high on the precipitation over eastern China in summer using RegCM3[J]. Theor. Appl. Climatol., 100 (1-2):67-78, doi: 10.1007/s00704-009-0166-1. [53] 周冠博, 崔晓鹏, 高守亭. 2012.台风"凤凰"登陆过程的高分辨率数值模拟及其降水的诊断分析[J].大气科学, 36 (1):23-34. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20120103&journal_id=dqkxZhou Guanbo, Cui Xiaopeng, Gao Shouting. 2012. The high-resolution numerical simulation and diagnostic analysis of the landfall process of typhoon Fungwong[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (1):23-34. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20120103&journal_id=dqkx [54] Zhou T J, Yu Y Q, Liu Y M, et al. 2014. Flexible Global Ocean-Atmosphere-Land System Model:A Modeling Tool for the Climate Change Research Community[M]. Berlin Heidelberg:Springer-Verlag, 483pp. [55] Zou L W, Zhou T J. 2011. Sensitivity of a regional ocean-atmosphere coupled model to convection parameterization over western North Pacific[J]. J. Geophys. Res., 116 (D18), doi: 10.1029/2011JD015844. [56] Zou L W, Zhou T J. 2013a. Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon?[J]. J. Climate, 26 (7):2353-2367, doi: 10.1175/JCLI-D-11-00722.1. [57] Zou L W, Zhou T J. 2013b. Improve the simulation of western North Pacific summer monsoon in RegCM3 by suppressing convection[J]. Meteor. Atmos. Phys., 121 (1-2):29-38, doi: 10.1007/s00703-013-0255-7. [58] Zou L W, Zhou T J, Peng D D. 2016. Dynamical downscaling of historical climate over CORDEX East Asia domain:A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations[J]. J. Geophys. Res., 121 (4):1442-1458, doi: 10.1002/2015JD023912. -