高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬季黑潮延伸体海区海洋锋强度变化及其与北太平洋风暴轴的关系

苑俐 肖子牛

苑俐, 肖子牛. 冬季黑潮延伸体海区海洋锋强度变化及其与北太平洋风暴轴的关系[J]. 大气科学, 2017, 41(6): 1141-1155. doi: 10.3878/j.issn.1006-9895.1705.16276
引用本文: 苑俐, 肖子牛. 冬季黑潮延伸体海区海洋锋强度变化及其与北太平洋风暴轴的关系[J]. 大气科学, 2017, 41(6): 1141-1155. doi: 10.3878/j.issn.1006-9895.1705.16276
Li YUAN, Ziniu XIAO. The Variability of the Oceanic Front in Kuroshio Extension and Its Relationship with the Pacific Storm Track in Winter[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1141-1155. doi: 10.3878/j.issn.1006-9895.1705.16276
Citation: Li YUAN, Ziniu XIAO. The Variability of the Oceanic Front in Kuroshio Extension and Its Relationship with the Pacific Storm Track in Winter[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1141-1155. doi: 10.3878/j.issn.1006-9895.1705.16276

冬季黑潮延伸体海区海洋锋强度变化及其与北太平洋风暴轴的关系

doi: 10.3878/j.issn.1006-9895.1705.16276
基金项目: 

国家自然科学基金项目 41490642/41690640

国家自然科学基金项目 41665004

详细信息
    作者简介:

    苑俐, 女, 1992年出生, 硕士研究生, 主要从事海气相互作用等方面的研究。E-mail:yuanli_cams@sina.com

    通讯作者:

    肖子牛, E-mail:xiaozn@lasg.iap.ac.cn

  • 中图分类号: P461

The Variability of the Oceanic Front in Kuroshio Extension and Its Relationship with the Pacific Storm Track in Winter

Funds: 

National Natural Science Foundation of China 41490642/41690640

National Natural Science Foundation of China 41665004

  • 摘要: 利用英国哈德莱中心(Hadley Center)1949~2014年表层海温资料,将黑潮延伸体海区海温经向梯度的大值区域的平均值定义为黑潮延伸体及其北部海洋锋强度指数(KEFI),利用数据分析方法研究了各季节KEFI的变化特征及其与北太平洋风暴轴的关系。分析表明,各季节的KEFI存在明显的年际和年代际变化特征,同时在冬季与北太平洋瞬时方差有显著正相关,两者在风暴轴主体位置的相关性最为显著,并且这种相关性在KEFI超前一个月时就所显现,同时对后期风暴轴也有一定影响,即冬季黑潮延伸体海区海洋锋的强度会影响风暴轴区域瞬时方差的变化。之后主要分析了这种影响的可能机制,发现在冬季KEFI高值年,由于海洋锋两侧的热量输送差异更加明显,导致海洋锋附近的近表面气温经向梯度增强,维持了近表面的斜压性,促进涡动热量的向极输送和海洋锋南侧的向上输送,有利于瞬时涡旋的发展。另外大尺度环流场与冬季黑潮延伸体海洋锋也有关系,具体表现为,在海洋锋强年,阿留申低压加深,副热带高压略有加强,对应的对流层低层位势高度场在40°N以北有负变高,以南有正变高,同时高空极锋急流加强,副热带西风急流减弱加宽北抬,海洋锋偏弱年的变化则相反。因此,冬季黑潮延伸体及其北部的海洋锋主要通过两侧海表热量输送差异不断产生气温梯度,进而维持斜压性以促进上层风暴轴的发展。
  • 图  1  1949~2014年黑潮延伸体及附近海域海温经向梯度季节分布[单位:℃ (100 km)-1]:(a)冬季;(b)春季;(c)夏季;(d)秋季。虚框内为所选区域

    Figure  1.  Variation of meridional SST (sea surface temperature) gradient [units: ℃ (100 km)-1] around Kuroshio extension in (a) winter, (b) spring, (c) summer, and (d) autumn during 1949–2014. The dashed box denotes the selected area for index calculation

    图  2  1949~2014年海洋锋强度指数指数(Kuroshio Extension Frontal Index,简称KEFI;左列)及功率谱分析(右列)季节变化:(a、e)冬季;(b、f)春季;(c、g)夏季;(d、h)秋季。(a–d)中黑色实线为KEFI,红色实线为九点二次平滑结果;(e–h)中蓝色实线为频率,绿色和红色虚线分别为通过90%和95%的信度水平检验

    Figure  2.  Variation of KEFI (Kuroshio Extension Frontal Index; left column) and power spectra (right column) in (a, e) winter, (b, f) spring, (c, g) summer, and (d, h) autumn during 1949–2014. The red solid line denotes the smoothing result in (a–d); in (e–h), the bluesolid line denote frequency, the green and red dotted lines indicate the 90% and 95% confidence levels, respectively

    图  3  1949~2014年各季节KEFI与同期500 hPa瞬变方差相关分布:(a)冬季;(b)春季;(c)夏季;(d)秋季。实线代表正相关,虚线代表负相关;填色颜色由浅至深表示分别达到90%、95%、99%的信度水平

    Figure  3.  Correlation of KEFI and transient variance at 500 hPa in (a) winter, (b) spring, (c) summer, and (d) autumn from 1949 to 2014. The solid line represents positive correlation and the dotted line represents negative correlation; the shaded areas ranging from light to dark indicate 90%, 95%, and 99% confidence levels

    图  4  1949/1950~2013/2014年(a)冬季平均的北太平洋500 hPa天气尺度位势高度滤波方差分布(等值线,单位:dagpm2,打点区域≥20 dagpm2)以及黑潮延伸体海洋锋区域,即海温经向梯度≥1.5℃ (100 km)-1区域(填色),以及(b)冬季KEFI和NII(北太平洋风暴轴强度指数)的时间变化序列(黑色线为KEFI,红色线为NII)

    Figure  4.  (a) Average of 500 hPa synoptic-scale geopotential height variance (contours, units: dagpm2, dotted areas indicate variance≥20 dagpm2) and the Kuroshio extension oceanic front (shaded), where meridional SST gradient≥1.5℃ (100 km)-1, and (b) time series of KEFI and NII (North Pacific storm axis Intensity Index) in winter from 1949/1950 to 2013/2014

    图  5  KEFI(3月滑动平均)与冬季瞬变方差的相关分布:KEFI分别超前冬季北太平洋瞬时方差(a)两个月、(b)一个月和(c)同期的相关系数;(d)冬季KEFI与后期滞后一个月的北太平洋瞬时方差的相关系数分布。实线代表正相关,虚线代表负相关,填色颜色由浅至深表示分别达到90%、95%和99%的信度水平

    Figure  5.  Correlation coefficients between (a) two-month-lead, (b) one-month-lead, and (c) simultaneous KEFI (3-month moving average) with winter transient variance over the North Pacific, and correlation coefficient between winter KEFI (3-month moving average) and one-month-lag transient variance over the North Pacific. The solid line represent positive correlation, the dotted lines represent negative correlation, and the shaded areas ranging from light to dark indicate 90%, 95%, and 99% confidence levels

    图  6  1949/1950~2013/2014年冬季KEFI位于(a)正位相、(b)负位相时500 hPa瞬变方差的异常分布(等值线为冬季风暴轴气候态分布,单位:dagpm2;打点区域表示达到95%的信度水平)

    Figure  6.  Composite analyses of transient variance anomalies at 500 hPa (shaded) during (a) positive and (b) negative phases of winter KEFI from 1949/1950 to 2013/2014 (contours indicate the storm track climatology, units: dagpm2, the dotted areas indicate the composite anomalies at the 95% confidence level)

    图  7  1949/1950~2013/2014年冬季(a)感热输送和(b)潜热输送在KEFI正、负位相年的差值场(单位:W m-2),向上输送为正,打点区域通过90%信度水平的检验

    Figure  7.  Composite differences (units: W m-2) of (a) the sensible heat flux anomalies and (b) latent heat flux anomalies between positive and negative phases of KEFI in winter from 1949/1950 to 2013/2014. Upward transport is positive, and the dotted areas indicate composite differences at the 90% confidence level.

    图  8  1949/1950~2013/2014年冬季850 hPa气温经向梯度在KEFI(a)正位相年、(b)负位相年的合成及其(c)差值分布[负值表示气温向极递减,单位:℃ (100 km)-1],打点区域表示达到95%的信度水平

    Figure  8.  Composite analyses of meridional air temperature gradient at 850 hPa during (a) positive and (b) negative phases of winter KEFI, and (c) the difference during 1949/1950–2013/2014. Negative values indicate the temperature decreases poleward, units: ℃ (100 km)-1; dotted areas indicate composite differences at the 95% confidence level

    图  9  冬季(a–b)海温经向梯度、(c–d)海表净热通量以及(e–f)850 hPa气温梯度分别回归至冬季KEFI(左列)和NII(右列)的回归系数空间分布,打点区域表示通过95%的信度检验

    Figure  9.  Distributions of the regression coefficients for (a–b) SST meridianl gradient, (c–d) surface net heat fluxes, (e–f) air temperature at 850 hPa regressed on KEFI (left panles) and NII (right panels) in winter. Dotted areas denote regression coefficients at the 95% confidence level

    图  10  949/1950~2013/2014年冬季150°~160°E纬向平均的涡动热量垂直输送ωT′在KEFI(a)正位相年、(b)负位相年的合成及其(c)差值分布(单位:0.01 K m s-1)。为了更加直观,这里将垂直速度放大100倍,同时规定向上为正;(a、b)中等值线间隔为1,(c)中为0.5;填色区域代表大于0.04 K m s-1;打点区域表示通过95%的信度检验

    Figure  10.  Composite analysis of upward eddy heat fluxes ω′T′ (averaged over 150°-160°E) during (a) positive and (b) negative phases of winter KEFI, and (c) the difference during 1949/1950–2013/2014 (units: 0.01 K m s-1). ω is amplified by one hundred times and upward is positive, the shadings represent the values > 0.04 K m s-1 and the dotted areas denote composite differences at the 95% confidence level

    图  11  1949/1950~2013/2014年冬季850 hPa异常涡动经向热量输送(单位:K m s-1)在KEFI位于(a)正、(b)负位相年的合成场及其(c)差值场,打点区域表示通过95%的信度检验

    Figure  11.  The poleward eddy heat fluxes V′T′ at 850 hPa during (a) positive and (b) negative phases of winter KEFI, and (c) the difference during 1949/1950– 2013/2014 (units: K m s-1). The dotted areas denote composite differences at the 95% confidence level

    图  12  1949/1950~2013/2014年冬季(a、b)海平面气压异常场(单位:hPa)、(c、d)500 hPa异常高度场(单位:gpm)以及(e、f)200 hPa异常全风速场(单位:m s-1)在KEFI正位相年(左列)、负位相年(右列)的合成场。打点区域通过95%的信度检验

    Figure  12.  (a, b) Sea level pressure anomalies (units: hPa), (c, d) 500 hPa potential height anomalies (units: gpm), and (e, f) 200 hPa wind speed anomalies (units: m s-1) in positive (left column) and negative (right column) phases of winter KEFI during 1949/1950–2013/2014. The dotted areas denote composite anomalies at the 95% confidence level

  • [1] Barnett T P, Pierce D W, Saravanan R, et al. 1999. Origins of the midlatitude Pacific decadal variability[J]. Geophysical Research Letters. 20 (10):1453-1456. http://www.academia.edu/16045737/Origins_of_the_midlatitude_Pacific_decadal_variability
    [2] Blackmon M L. 1976. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere[J]. J. Atmos. Sci., 33 (8):1607-1623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.
    [3] Chang E K M, Fu Y F. 2002. Interdecadal variations in Northern Hemisphere winter storm track intensity[J]. J. Climate, 15 (6):642-658, doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.
    [4] Hashizume H, Xie S P, Fujiwara M, et al. 2002. Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific[J]. J. Climate, 15(23):3379-3391, doi:10.1175/1520-0442(2002)015 <3379:DOOABL> 2.0.CO;2.
    [5] Hayes S P, McPhaden M J, Wallace J M. 1989. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific:Weekly to monthly variability[J]. J. Climate, 2 (12):1500-1506, doi:10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.
    [6] Hoskins B J, Valdes P J. 1990. On the existence of storm-tracks[J]. J. Atmos. Sci., 47 (15):1854-1864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.
    [7] Hotta D, Nakamura H. 2011. On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks[J]. J. Climate, 24 (13):3377-3401, doi: 10.1175/2010JCLI3910.1.
    [8] 胡增臻, 黄荣辉. 1997.冬季热带西太平洋对流活动异常的年际变化及其对北太平洋风暴轴的影响[J].大气科学, 21 (5):513-522. doi: 10.3878/j.issn.1006-9895.1997.05.01

    Hu Z Z, Huang R H. 1997. The interannual variation of the convective activity in the tropical West Pacific in winter and its effect on the storm track in the North Pacific[J]. Chinese Journal of Atmospheric Sciences, 21 (5):513-522, doi: 10.3878/j.issn.1006-9895.1997.05.01.
    [9] Kelly K A, Small R J, Samelson R M, et al. 2010. Western boundary currents and frontal air-sea interaction:Gulf Stream and Kuroshio extension[J]. J. Climate, 23 (21):5644-5667, doi: 10.1175/2010JCLI3346.1.
    [10] Kwon Y O, Alexander M A, Bond N A, et al. 2010. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction:A review[J]. J. Climate, 23 (12):3249-3281, doi: 10.1175/2010JCLI3343.1.
    [11] Lau N C. 1988. Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern[J]. J. Atmos. Sci., 45 (19):2718-2743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.
    [12] Lindzen R S, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. J. Atmos. Sci., 44 (17):2418-2436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.
    [13] 马静, 徐海明. 2012.春季黑潮延伸体海洋锋区经向位移与东亚大气环流的关系[J].气象科学, 32 (4):375-384. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201204004.htm
    [14] Ma J, Xu H M. 2010. The relationship between meridional displacement of the oceanic front in Kuroshio extension during spring and atmospheric circulation in East Asia[J]. Journal of the Meteorological Sciences, 32 (4):375-384, doi: 10.3969/2012jms.0092.
    [15] Minobe S, Kuwano-yoshida A, Komori N, et al. 2008. Influence of the Gulf Stream on the troposphere[J]. Nature, 452 (7184):206-209, doi:10. 1038/nature06690.
    [16] Nakamura H, Lin G, Yamagata T. 1997. Decadal climate variability in the North Pacific during the recent decades[J]. Bull. Amer. Meteor. Soc., 78 (10):2215-2225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.
    [17] Nakamura H, Izumi T, Sampe T. 2002. Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon[J]. J. Climate, 15 (14):1855-1874, doi:10.1175/1520-0442 (2002)015<1855:IADMRO>2.0.CO;2.
    [18] Nakamura H, Nishina A, Minobe S. 2012. Response of storm tracks to bimodal Kuroshio path states south of Japan[J]. J. Climate, 25 (21):7772-7779, doi: 10.1175/JCLI-D-12-00326.1.
    [19] Nakamura H, Sampe T, Tanimoto Y, et al. 2004. Observed associations among storm tracks, jet streams and midlatitude oceanic fronts[M]//Wang C, Xie S P, Carton J A. Earth's Climate. Washington:American Geophysical Union, 147:329-345, doi: 10.1029/147GM18.
    [20] Nakamura H, Sampe T, Goto A, et al. 2008. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation[J]. Geophys. Res. Lett., 35 (15):L15709, doi: 10.1029/2008GL034010.
    [21] Nakamura M, Yamane S. 2009. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part Ⅰ:North Atlantic basin. Journal of Climate, 22 (22):880-904. http://weather.ou.edu/~ermartin/amssamp1.pdf
    [22] Ogawa F, Nakamura H, Nishii K, et al. 2012. Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front[J]. Geophys. Res. Lett., 39 (5):L05804, doi: 10.1029/2011GL049922.
    [23] Qiu B, Chen S M. 2005. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. J. Phys. Oceanogr., 35 (11):2090-2103, doi: 10.1175/JPO2807.1.
    [24] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J. Geophys. Res., 108 (D14):4407, doi: 10.1029/2002JD002670.
    [25] Tokinaga H, Tanimoto Y, Xie S P, et al. 2009. Ocean frontal effects on the vertical development of clouds over the western North Pacific:In situ and satellite observations[J]. J. Climate, 22 (16):4241-4260, doi: 10.1175/2009JCLI2763.1.
    [26] Wallace J M, Hobbs P V. 2006. Atmospheric Science:An Introductory Survey[M]. 2nd ed. Amsterdam:Elsevier.
    [27] Wallace J M, Mitchell T P, Deser C. 1989. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific:Seasonal and interannual variability[J]. J. Climate, 2 (12):1492-1499, doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.
    [28] Wang L Y, Hu H B, Yang X Q, et al. 2016. Atmospheric eddy anomalies associated with the wintertime North Pacific subtropical front strength and their influences on the seasonal-mean atmosphere[J]. Science China Earth Sciences, 59 (10):2022-2036, doi: 10.1007/s11430-016-5331-7.
    [29] Warner T T, Lakhtaki M N, Doyle J D, et al. 1990. Marine atmospheric boundary layer circulations forced by Gulf Stream sea surface temperature gradients[J]. Mon. Wea. Rev., 118 (2):309-323, doi:10. 1175/1520-0493(1990)118<0309:MABLCF>2.0.CO;2.
    [30] Wettstein J J, Wallace J M. 2010. Observed patterns of month-to-month storm-track variability and their relationship to the background flow[J]. J. Atmos. Sci., 67 (5):1420-1437, doi: 10.1175/2009JAS3194.1.
    [31] Xie S. P. 2004. Satellite observations of cool ocean-atmosphere interaction[J]. Bull. Amer. Meteor. Soc., 85 (2):195-208, doi: 10.1175/BAMS-85-2-195.
    [32] 徐海明, 王琳玮, 何金海. 2008.卫星资料揭示的春季黑潮海区海洋对大气的影响及其机制研究[J].科学通报, 53 (4):463-470. doi: 10.1007/s11434-008-0138-3

    Xu Haiming, Wang Linwei, He Jinhai. 2008. Observed oceanic feedback to the atmosphere over the Kuroshio Extension during spring time and its possible mechanism[J]. Chinese Science Bulletin, 53 (12):1905-1912, doi:10. 1007/s11434-008-0138-3.
    [33] Xu M M, Xu H M. 2015. Atmospheric responses to Kuroshio SST front in the East China Sea under different prevailing winds in winter and spring[J]. J. Climate, 28 (8):3191-3211, doi: 10.1175/JCLI-D-13-00675.1.
    [34] 杨国杰, 任雪娟, 孙旭光, 等. 2010.大气瞬变强迫对冬季西太平洋遥相关型影响[J].气象科学, 30 (3):285-291. doi: 10.3969/j.issn.1009-0827.2010.03.001

    Yang Guojie, Ren Xuejuan, Sun Xuguang, et al. 2010. Primary analysis of the effect of the transient eddy forcing on western Pacific teleconnection pattern in winter[J]. Scientia Meteorologica Sinica, 30 (3):285-291, doi:10.3969/j.issn. 1009-0827.2010.03.001.
    [35] Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project:Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]. OAFlux Project Technical Report (OA-2008-01), Woods Hole, Mass:Woods Hole Oceanographic Institution.
    [36] 赵永平, McBean G A. 1995.黑潮海域海洋异常加热与北半球大气环流的相互作用[J].海洋与湖沼, 26 (4):383-388. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199504006.htm

    Zhao Yongping, McBean G A. 1995. Air-sea interaction between the Kuroshio region marine heating anomaly and Northern Hemisphere atmospheric circulation[J]. Oceanologia et Limnologia Sinica, 26 (4):383-388. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199504006.htm
    [37] 朱伟军, 孙照渤. 2000.冬季北太平洋风暴轴的年际变化及其与500hPa高度以及热带和北太平洋海温的联系[J].气象学报, 58 (3):309-320. doi: 10.11676/qxxb2000.032

    Zhu Weijun, Sun Zhaobo. 2000. Interannual variability of northern winter Pacific storm track and its association with 500 hPa height and tropical and northern Pacific sea surface temperature[J]. Acta Meteor. Sinica, 58 (3):309-320, doi: 10.11676/qxxb2000.032.
    [38] 朱伟军, 李莹. 2010.冬季北太平洋风暴轴的年代际变化特征及其可能影响机制[J].气象学报, 68 (4):477-486. doi: 10.11676/qxxb2010.046

    Zhu Weijun, Li Ying. 2010. Inter decadal variation characteristics of winter North Pacific storm tracks and its possible influencing mechanism[J]. Acta Meteor. Sinica, 68 (4):477-486, doi: 10.11676/qxxb2010.046.
    [39] 朱伟军, 孙照渤, 闵锦忠, 等. 2000.冬季赤道中东太平洋区域海表温度异常对北太平洋风暴轴年际变化的影响[J].热带气象学报, 16 (1):91-96. doi: 10.3969/j.issn.1004-4965.2000.01.012

    Zhu Weijun, Sun Zhaobo, Min Jinzhong, et al. 2000. Influence on northern Pacific storm track of equatorial central and eastern Pacific SSTA during winter[J]. Journal of Tropical Meteorology, 6 (1):91-96, doi: 10.3969/j.issn.1004-4965.2000.01.012.
  • 加载中
图(12)
计量
  • 文章访问数:  4145
  • HTML全文浏览量:  64
  • PDF下载量:  2047
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-29
  • 网络出版日期:  2017-05-27
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回