高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年6月23日江苏阜宁龙卷的高分辨快速更新同化预报与分析1

李佳 陈葆德 张旭 黄伟

李佳, 陈葆德, 张旭, 黄伟. 2016年6月23日江苏阜宁龙卷的高分辨快速更新同化预报与分析1[J]. 大气科学, 2017, 41(6): 1221-1233. doi: 10.3878/j.issn.1006-9895.1707.17144
引用本文: 李佳, 陈葆德, 张旭, 黄伟. 2016年6月23日江苏阜宁龙卷的高分辨快速更新同化预报与分析1[J]. 大气科学, 2017, 41(6): 1221-1233. doi: 10.3878/j.issn.1006-9895.1707.17144
Jia LI, Baode CHEN, Xu ZHANG, Wei HUANG. High-Resolution Rapid Refresh Analysis and Prediction of the Tornado Occurring in Funing on 23 June 2016[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1221-1233. doi: 10.3878/j.issn.1006-9895.1707.17144
Citation: Jia LI, Baode CHEN, Xu ZHANG, Wei HUANG. High-Resolution Rapid Refresh Analysis and Prediction of the Tornado Occurring in Funing on 23 June 2016[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1221-1233. doi: 10.3878/j.issn.1006-9895.1707.17144

2016年6月23日江苏阜宁龙卷的高分辨快速更新同化预报与分析1

doi: 10.3878/j.issn.1006-9895.1707.17144
基金项目: 

国家重点研发计划“政府间国际科技创新合作”重点专项 2016YFE0109700

国家自然科学基金项目 41575101

国家自然科学基金项目 41505087

详细信息
    作者简介:

    李佳, 女, 1978年出生, 硕士, 副研究员, 主要从事数值天气预报研发应用等研究。E-mail:lij@typhoon.org.cn

    通讯作者:

    陈葆德, E-mail:baode@typhoon.org.cn

  • 中图分类号: P458

High-Resolution Rapid Refresh Analysis and Prediction of the Tornado Occurring in Funing on 23 June 2016

Funds: 

National Key Research and Development Plan "Inter Governmental Cooperation in International Scientific and Technological Innovation" Key Projects 2016YFE0109700

National Natural Science Foundation of China 41575101

National Natural Science Foundation of China 41505087

  • 摘要: 基于3 km水平分辨率的第二代华东快速更新循环同化预报模式系统,对2016年6月23日江苏阜宁龙卷个例预报结果进行了分析,通过螺旋度的时间演变等讨论了龙卷母体—对流单体的发展过程,并对比了有无同化的预报结果。结果表明,快速更新循环同化系统在阜宁附近模拟出了类似龙卷母体的涡旋结构,同时伴随有剧烈的上升运动,模拟的发生时间与发展过程与实况基本吻合。但模拟的涡旋发生在江苏阜宁北侧,与观测相比偏差20多公里,且最大地面风速较实况小。进一步分析表明,该对流单体从中层上升运动开始,随着上升区向上和向下发展,首先在中高空出现剧烈的上升运动,z螺旋度增大,高层辐散加强,x螺旋度增大,随后中低空的垂直运动也增强,y螺旋度增大,低层辐合增强,最后随着高层辐散和垂直运动的减弱,低层涡旋减弱并消散。北京时间14:00没有进行观测资料同化预报结果中,在阜宁附近没有预报出类似的对流单体,表明逐小时循环同化对此次龙卷天气的模拟起着关键作用。
  • 图  1  第二代华东快速更新循环同化系统预报区域(阴影表示地形高度,单位:m)

    Figure  1.  Forecast area of SMS-WARRV2.0 (Shanghai Meteorological Service-WRF ADAS Rapid Refresh System, Version2.0; shadings denote terrain height, units: m)

    图  2  2016年06月23日最大雷达反射率(单位:dBZ,黑色点表示阜宁站):(a)14:00雷达回波实况;(b)模式14:00初始场;(c)15:00雷达回波实况;(d)模式14:00起报1 h预报场

    Figure  2.  Maximum radar reflectivity (units: dBZ) on 23 June 2016 (the black dot indicates the Funing station): (a) Observation at 1400 BT (Beijing time); (b) SMS-WARRV2.0 initial field at 1400 BT; (c) observation at 1500 BT; (d) SMS-WARRV2.0 1 h forecast initialized at 1400 BT

    图  3  SMS-WARRV2.0系统2016年06月23日14:00起报200 m高度位涡(单位:PVU)和流场(单位:m s-1)时间演变(黑色点表示阜宁站):(a)14:20;(b)14:25;(c)14:30;(d)14:35;(e)14:40;(f)14:45;(g)14:50;(h)14:55;(i)15:00

    Figure  3.  Temporal evolution of potential vorticity (units: PVU) and wind vectors (units: m s-1) at 200 m above the ground initialized at 1400 BT 23 June 2016 (the black dot indicates the Funing station): (a) 1420 BT; (b) 1425 BT; (c) 1430 BT; (d) 1435 BT; (e) 1440 BT; (f) 1445 BT; (g) 1450 BT; (h) 1455 BT; (i) 1500 BT

    图  4  SMS-WARRV2.0系统2016年06月23日14:00起报200 m高度涡旋中心14:20~14:55时间演变(红色圆圈表示涡旋中心,黑色点表示阜宁站)

    Figure  4.  Temporal evolution of the vortex center at the 200 m height during 1420 BT-1455 BT simulated by SMS-WARRV2.0 initialized at 1400 BT 23 June 2016 (red circle indicates the vortex center; black dot denotes the Funing station)

    图  5  SMS-WARRV2.0系统2016年06月23日14:00起报14:45 1200 m高度雷达反射率(单位:dBZ)和200 m高度流场(单位:m s-1;黑色点表示阜宁站)

    Figure  5.  Radar reflectivity (units: dBZ) at 1200 m height and wind vectors (units: m s-1) at 200 m height at 1445 BT predicted by SMS-WARRV2.0, which was initialized at 1400 BT 23 June 2016 (black dot denotes the Funing station)

    图  6  SMS-WARRV2.0系统2016年06月23日14:00起报(a)14:50地面10 m高度的风场(单位:m s-1)以及(b)14:00~15:00 1 h的累积降水量(单位:mm)。黑色点表示阜宁站

    Figure  6.  (a) 10 m-height wind (units: m s-1) at 1450 BT and (b) 1-h accumulated precipitation (units: mm) during 1400 BT-1500 BT predicted by SMS-WARRV2.0, which was initialized at 1400 BT 23 June 2016 (black dot indicates the Funing station)

    图  7  SMS-WARRV2.0系统2016年06月23日14:00起报涡旋中心附近10×10网格点0~16 km高度的xyz螺旋度分布(单位:m s-2,垂直间隔200 m):(a)14:10;(b)14:25;(c)14:45;(d)15:00

    Figure  7.  3-D distributions of x-, y-, z-helicity (units: m s-2) within 10×10 grid points from 0 to 16 km height (vertical interval is 200 m) around the vortex predicted by SMS-WARRV2.0, which was initialized at 1400 BT 23 Jun 2016: (a) 1410 BT; (b) 1425 BT; (c) 1445 BT; (d) 1500 BT

    图  8  SMS-WARRV2.0系统2016年06月23日14:00起报14:10~15:00每分钟模式区域最大垂直速度位置分布和数值区间(单位:m s-1,黑色圆点表示阜宁站)

    Figure  8.  Positions and ranges (units: m s-1) of the strongest updraft within the 3-D model domain at 1-min interval between 1410 BT and 1500 BT predicted by SMS-WARRV2.0, which was initialized at 1400 BT 23 Jun 2016 (black dot indicates the Funing station)

    图  9  SMS-WARRV2.0系统2016年06月23日14:00起报14:25水平风(单位:m s-1,红色三角形表示涡旋中心,黑色圆点表示阜宁站):(a)12 km;6 km;(c)0.05 km

    Figure  9.  Horizontal wind (units: m s-1) at 1425 BT predicted by SMS-WARRV2.0, which was initialized at 1400 BT 23 Jun 2016 (red triangle denotes the vortex center, black dot indicates the Funing station): (a) 12 km; (b) 6 km; (c) 0.05 km

    图  10  SMS-WARRV2.0系统2016年06月23日14:00起报的涡旋中心附近的温度距平和气压扰动南—北剖面(阴影为温度距平,单位:℃;虚线为气压扰动,单位:Pa;红色三角形为涡旋中心,网格距是3 km):(a)14:00;(b)14:10;(c)14:25

    Figure  10.  North-south cross sections of temperature anomalies (shaded, units: ℃) and pressure perturbations (dashed lines, units: Pa) simulated by SMS-WARRV2.0, which was initialized at 1400 BT 23 Jun 2016 (red triangle indicates the vortex center, grid interval is 3 km): (a) 1400 BT; (b) 1410 BT; (c) 1425 BT

    图  11  SMS-WARRV2.0系统2016年06月23日14:00无资料同化起报14:10~15:00每分钟模式区域最大垂直速度位置分布和数值区间(单位:m s-1;黑色圆点表示阜宁站)

    Figure  11.  Positions and ranges (units: m s-1) of the strongest updraft within the 3-D model domain at 1-min interval between 1410 BT and 1500 BT predicted by SMS-WARRV2.0, which was initialized at 1400 BT 23 Jun 2016 without data assimilation (black dot indicates the Funing station)

    表  1  SMS-WARRV2.0模式参数

    Table  1.   Parameters of SMS-WARRV2.0 model system

    模式参数 参数化方案
    中心位置 30°N,119°E
    水平分辨率 3 km
    水平格点数 793×853
    垂直层次 51
    冷启动时间 02:00
    起报频次 每小时一次
    预报时效 12 h
    模式系统 WRF3.5.1
    同化系统 ADAS5.3.3
    背景场及边界条件 SMS-WARMSV2.0 20:00
    边界条件更新 3 h
    微物理过程参数化 Thompson (Thompson et al., 2004)
    长波辐射参数化 RRTMG (Iacono et al., 2008)
    短波辐射参数化 RRTMG
    陆面过程参数化 Noah (Tewari et al., 2004)
    地表过程参数化 Monin-Obukhov (Janjic Eta) (Monin et al., 1954).
    边界层参数化方案 MYJ (Mellor et al., 1982)
    积云对流参数化方案
    下载: 导出CSV

    表  2  2016年06月23日14:00 SMS-WARRV2.0同化的观测资料

    Table  2.   Observations at 1400 BT (Beijing time) 23 June 2016 used in SMS-WARRV2.0

    观测资料类型 数量
    常规地面观测 1602
    机场地面 21
    船舶观测 15
    自动气象站 20496
    飞机观测 2422
    探空 19
    小球测风 0
    雷达(反射率) 53
    FY2G静止气象卫星红外和可见光(辐射率) 红外1个通道,可见光1个通道
    下载: 导出CSV
  • [1] Benjamin S G, Dévényi D, Weygandt S S, et al. 2004. An hourly assimilation-forecast cycle:The RUC[J]. Mon. Wea. Rev., 132 (2):495-518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO; 2.
    [2] Benjamin S G, Weygandt S S, Brown J M, et al. 2016. A North American hourly assimilation and model forecast cycle:The rapid refresh[J]. Mon. Wea. Rev., 144 (4):1669-1694, doi: 10.1175/MWR-D-15-0242.1.
    [3] 曹艳察, 张涛. 2016. 2016年6月大气环流和天气分析[J].气象, 42 (9):1154-1160. doi: 10.7519/j.issn.1000-0526.2016.09.013

    Cao Yancha, Zhang Tao. 2016. Analysis of the June 2016 atmospheric circulation and weather[J]. Meteorological Monthly, 42 (9):1154-1160, doi: 10.7519/j.issn.1000-0526.2016.09.013.
    [4] 陈敏, 范水勇, 郑祚芳, 等. 2011.基于BJ-RUC系统的临近探空及其对强对流发生潜势预报的指示性能初探[J].气象学报, 69 (1):181-194. doi: 10.11676/qxxb2011.016

    Chen Min, Fan Shuiyong, Zheng Zuofang, et al. 2011. The performance of the proximity sounding based on the BJ-RUC system and its preliminary implementation in the convective potential forecast[J]. Acta Meteorologica Sinica, 69 (1):181-194, doi: 10.11676/qxxb2011.016.
    [5] 陈葆德, 王晓峰, 李泓, 等. 2013.快速更新同化预报的关键技术综述[J].气象科技进展, 3 (2):29-35. doi: 10.3969/j.issn.2095-1973.2013.02.003

    Chen Baode, Wang Xiaofeng, Li Hong, et al. 2013. An overview of the key techniques in rapid refresh assimilation and forecast[J]. Advances in Meteorological Science and Technology, 3 (2):29-35, doi:10.3969/j.issn.2095-1973. 2013.02.003.
    [6] 陈子通, 黄燕燕, 万齐林, 等. 2010.快速更新循环同化预报系统的汛期试验与分析[J].热带气象学报, 26 (1):49-54. doi: 10.3969/j.issn.1004-4965.2010.01.007

    Chen Zitong, Huang Yanyan, Wan Qilin, et al. 2010. Rapid updating cycle assimilation and forecasting system and its experiments and analysis in flood seasons[J]. Journal of Tropical Meteorology, 26 (1):49-54, doi: 10.3969/j.issn.1004-4965.2010.01.007.
    [7] Gaffin D M, Parker S S. 2006. A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachian region[J]. Wea. Forecasting, 21 (5):735-751, doi: 10.1175/WAF951.1.
    [8] 高守亭, 周菲凡. 2006.基于螺旋度的中尺度平衡方程及非平衡流诊断方法[J].大气科学, 30 (5):854-862. doi: 10.3878/j.issn.1006-9895.2006.05.14

    Gao Shouting, Zhou Feifan. 2006. Mesoscale balance equation and the diagnostic method of unbalanced flow based on helicity[J]. Chinese Journal of Atmospheric Sciences, 30 (5):854-862, doi:10.3878/j.issn.1006-9895. 2006.05.14.
    [9] Hanley K E, Barrett A I, Lean H W. 2016. Simulating the 20 May 2013 Moore, Oklahoma tornado with a 100-metre grid-length NWP model[J]. Atmos. Sci. Let., 17 (8):453-461, doi: 10.1002/asl.678.
    [10] 郝民, 徐枝芳, 陶士伟, 等. 2011. GRAPES RUC系统模拟研究及应用试验[J].高原气象, 30 (6):1573-1583. http://d.wanfangdata.com.cn/Periodical/gyqx201106017

    Hao Min, Xu Zhifang, Tao Shiwei, et al. 2011. Simulation study and application experiment of GRAPES RUC system[J]. Plateau Meteorology, 30 (6):1573-1583. http://d.wanfangdata.com.cn/Periodical/gyqx201106017
    [11] Hu M, Xue M. 2007. Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case[J]. Mon. Wea. Rev., 135 (2):507-525, doi: 10.1175/MWR3313.1.
    [12] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. Journal Geophysical Research, 113, D13103, doi: 10.1029/2008JD009944.
    [13] Kain J S, Weiss S J, Bright D R, et al. 2008. Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP[J]. Wea. Forecasting, 23 (5):931-952, doi: 10.1175/WAF2007106.1.
    [14] Klemp J B. 1987. Dynamics of tornadic thunderstorms[J]. Ann. Rev. Fluid Mech., 19:369-402, doi: 10.1146/annurev.fl.19.010187.002101.
    [15] 李改琴, 许庆娥, 吴丽敏, 等. 2014.一次龙卷风天气的特征分析[J].气象, 40 (5):628-636. doi: 10.7519/j.issn.1000-0526.2014.05.014

    Li Gaiqin, Xu Qing'e, Wu Limin, et al. 2014. Characteristics analysis of tornado weather[J]. Meteorological Monthly, 40 (5):628-636, doi: 10.7519/j.issn.1000-0526.2014.05.014.
    [16] 李泽椿, 毕宝贵, 金荣花, 等. 2014.近10年中国现代天气预报的发展与应用[J].气象学报, 72 (6):1069-1078. doi: 10.11676/qxxb2014.090

    Li Zechun, Bi Baogui, Jin Ronghua, et al. 2014. The development and application of the modern weather forecast in China for the recent 10 years[J]. Acta Meteorologica Sinica, 72 (6):1069-1078, doi: 10.11676/qxxb2014.090.
    [17] Lyu H M, Wang G F, Cheng W C, et al. 2017. Tornado hazards on June 23 in Jiangsu Province, China:Preliminary investigation and analysis[J]. Nat. Hazards, 85 (1):597-604, doi: 10.1007/s11069-016-2588-2.
    [18] Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 20 (4):851-875. doi: 10.1029/RG020i004p00851
    [19] Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Geophysics Institute, USSR Academy of Science, 24 (151):163-187, (Originally published in Russian, translated by John Miller, American Meteorological Society, 1959)
    [20] Rasmussen E N, Blanchard D O. 1998. A baseline climatology of sounding-derived supercell and tornado forecast parameters[J]. Wea. Forecasting, 13 (4):1148-1164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO; 2.
    [21] Schumacher R S, Lindsey D T, Schumacher A B, et al. 2010. Multidisciplinary analysis of an Unusual tornado:Meteorology, climatology, and the communication and interpretation of warnings[J]. Wea. Forecasting, 25 (5):1412-1429, doi: 10.1175/2010WAF2222396.1.
    [22] Sobash R, Bright D R, Dean A R, et al. 2008. Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts[C]//Preprints, 24th Conference on Severe Local Storms. Savannah, GA:American Meteor Society, 11.3.
    [23] Tewari M, Chen F, Wang W, et al. 2004. Implementation and verification of the unified NOAH land surface model in the WRF model[C]. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. 11-15.
    [24] Thompson G, Rasmussen R M, Manning K. 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. PartⅠ:Description and sensitivity analysis[J]. Monthly Weather Review, 132:519-542. doi: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
    [25] 王红燕, 王东平, 牛淑贞, 等. 2013.河南长葛南席一次龙卷成因分析及雷达预警初探[J].暴雨灾害, 32 (3):256-262. doi: 10.3969/j.issn.1004-9045.2013.03.009

    Wang Hongyan, Wang Dongping, Niu Shuzhen, et al. 2013. Analysis on the causes of a tornado in Nanxi, Changge of Henan Province and the preliminary study on radar warning[J]. Torrential Rain and Disasters, 32 (3):256-262, doi: 10.3969/j.issn.1004-9045.2013.03.009.
    [26] 王叶红, 彭菊香, 公颖, 等. 2011. AREM-RUC 3 h快速更新同化预报系统的建立与实时预报对比检验[J].暴雨灾害, 30 (4):296-304. doi: 10.3969/j.issn.1004-9045.2011.04.002

    Wang Yehong, Peng Juxiang, Gong Ying, et al. 2011. Establishment and real-time forecasting verification of AREM-RUC 3 h rapid update assimilation and forecast system[J]. Torrential Rain and Disasters, 30 (4):296-304, doi: 10.3969/j.issn.1004-9045.2011.04.002.
    [27] 魏东, 尤凤春, 杨波, 等. 2011.北京快速更新循环预报系统(BJ-RUC)要素预报质量评估[J].气象, 37 (12):1489-1497. doi: 10.7519/j.issn.1000-0526.2011.12.003

    Wei Dong, You Fengchun, Yang Bo, et al. 2011. Assessment and analysis of meteorological elements forecasted by Beijing rapid update cycle forecast system[J]. Meteorological Monthly, 37 (12):1489-1497, doi: 10.7519/j.issn.1000-0526.2011.12.003.
    [28] 吴芳芳, 俞小鼎, 王慧, 等. 2010.一次强降水超级单体风暴多普勒天气雷达特征[J].大气科学学报, 33 (3):285-298. doi: 10.3969/j.issn.1674-7097.2010.03.004

    Wu Fangfang, Yu Xiaoding, Wang Hui, et al. 2010. A HP supercell case study with the data of Doppler weather radar detection[J]. Transactions of Atmospheric Sciences, 33 (3):285-298, doi:10.3969/j.issn.1674-7097. 2010.03.004.
    [29] 徐枝芳, 郝民, 朱立娟, 等. 2013. GRAPES_RAFS系统研发[J].气象, 39 (4):466-477. doi: 10.7519/j.issn.1000-0526.2013.04.009

    Xu Zhifang, Hao Min, Zhu Lijuan, et al. 2013. On the research and development of GRAPES_RAFS[J]. Meteorological Monthly, 39 (4):466-477, doi:10.7519/j.issn.1000-0526. 2013.04.009.
    [30] Xue M, Hu M, Schenkman A D. 2014. Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data[J]. Wea. Forecasting, 29 (1):39-62, doi: 10.1175/WAF-D-13-00029.1.
    [31] Xue M, Zhao K, Wang M J, et al. 2016. Recent significant tornadoes in China[J]. Advances in Atmospheric Sciences, 33 (11):1209-1217, doi: 10.1007/s00376-016-6005-2.
    [32] 俞小鼎, 郑媛媛, 张爱民, 等. 2006.安徽一次强烈龙卷的多普勒天气雷达分析[J].高原气象, 25 (5):914-924. doi: 10.3321/j.issn:1000-0534.2006.05.020

    Yu Xiaoding, Zheng Yuanyuan, Zhang Aiming, et al. 2006. The detection of a severe tornado event in Anhui with China new generation weather radar[J]. Plateau Meteorology, 25 (5):914-924, doi: 10.3321/j.issn:1000-0534.2006.05.020.
    [33] 俞小鼎, 郑媛媛, 廖玉芳, 等. 2008.一次伴随强烈龙卷的强降水超级单体风暴研究[J].大气科学, 32 (3):508-522. doi: 10.3878/j.issn.1006-9895.2008.03.08

    Yu Xiaoding, Zheng Yuanyuan, Liao Yufang, et al. 2008. Observational investigation of a tornadic heavy precipitation supercell storm[J]. Chinese Journal of Atmospheric Sciences, 32 (3):508-522, doi:10.3878/j.issn. 1006-9895.2008.03.08.
    [34] 张小玲, 杨波, 朱文剑, 等. 2016. 2016年6月23日江苏阜宁EF4级龙卷天气分析[J].气象, 42 (11):1304-1314. doi: 10.7519/j.issn.1000-0526.2016.11.002

    Zhang Xiaoling, Yang Bo, Zhu Wenjian, et al. 2016. Analysis of the EF4 tornado in Funing county, Jiangsu Province on 23 June 2016[J]. Meteorological Monthly, 42 (11):1304-1314, doi:10.7519/j.issn.1000-0526.2016.11. 002.
    [35] 郑媛媛, 朱红芳, 方翔, 等. 2009.强龙卷超级单体风暴特征分析与预警研究[J].高原气象, 28 (3):617-625. http://d.wanfangdata.com.cn/Periodical/gyqx200903017

    Zheng Yuanyuan, Zhu Hongfang, Fang Xiang, et al. 2009. Characteristic analysis and early-warning of tornado supercell storm[J]. Plateau Meteorology, 28 (3):617-625. http://d.wanfangdata.com.cn/Periodical/gyqx200903017
    [36] 周后福, 施丹平, 刁秀广, 等. 2014. 2013年7月7日苏皖龙卷环境场与雷达特征分析[J].干旱气象, 32 (3):415-423. doi: 10.11755/j.issn.1006-7639(2014)-03-0415

    Zhou Houfu, Shi Danping, Diao Xiuguang, et al. 2014. Analysis on environment field and radar echoes feature of a tornado in Jiangsu and Anhui Provinces on 7 July 2013[J]. Journal of Arid Meteorology, 32 (3):415-423, doi: 10.11755/j.issn.1006-7639(2014)-03-0415.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  3035
  • HTML全文浏览量:  36
  • PDF下载量:  1943
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-27
  • 网络出版日期:  2017-07-17
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回