A Mechanism Study on the Sudden Track Change of Super Typhoon Goni (2015)
-
摘要: 本文采用中国气象局的最佳台风路径数据和美国国家环境预报中心1°×1°每6 h再分析资料作为研究工作的基本场,运用了分部位涡反演方法探讨影响2015年第15号超强台风“天鹅”路径突变的物理机制,得到以下结论:(1)就天气系统而言,“天鹅”整个移动过程中都受到周围环境场及引导气流的影响,主要的影响系统包括西北太平洋副热带高压、季风涡旋、邻近台风“艾莎尼”及台风外围反气旋;(2)定量分析了与各影响系统扰动位涡相关的引导气流矢量,发现整个过程中超强台风“天鹅”的移动始终受西北太平洋副热带高压的影响,其次是来自季风涡旋及台风外围反气旋的贡献,而当“天鹅”有向北转向趋势时,与外围反气旋相关的东北向引导气流导致了台风的路径北折;(3)进一步定量分析了总扰动位涡在不同高度层上相关引导气流的贡献,结果表明在垂直方向上对流层中层系统的引导气流矢量与“天鹅”的移动最为吻合,而形成于低层系统的偏南风气流与“天鹅”向北突然转向有着密切的联系,并在转向后逐渐向中高层发展增强。Abstract: Based on the best track data from China Meteorological Agency and 6-h reanalysis data with a resolution of 1°×1° from National Centers for Environmental Prediction, this study conducts the piecewise potential vorticity inversion to reveal the dynamic mechanism by which the 15th super typhoon Goni in 2015 suddenly changed its track.The results are as follows.(1) From the perspective of synoptic system, Goni was affected by the large-scale background system and the steering flows including the Northwest Pacific subtropical high, the monsoon gyre, the typhoon Atsani and the peripheral anticyclone of Atsani during the whole lifetime of Goni.(2) On the basis of quantitative analysis of the steering flow inverted from potential vorticity perturbation associated with the four components, we find that the steering flow vector of Goni was always affected by the Northwest Pacific subtropical high, while the monsoon gyre and peripheral anticyclone played a secondary role.At the time when Goni turned northward suddenly, the steering flow associated with the peripheral anticyclone acted as a major factor that resulted in the abrupt northward turning.(3) The contribution of the total potential vorticity perturbation to the relevant steering flow at different altitudes is further analyzed quantitatively.Results show that the steering flow vector in the middle troposphere is in good agreement with the movement of Goni, and the southerly flow formed in the low-level system is closely related to Goni's abrupt northward turning and its subsequent enhancement in the upper troposphere after the abrupt turning.
-
Key words:
- Typhoon /
- Potential vorticity inversion /
- Sudden track change /
- Steering flow
-
图 1 超强台风“天鹅”的路径,来自中国气象局每6 h的最佳路径数据,时间为2015年8月14日18:00(协调世界时,下同)至27日00:00,其中小图为21日00:00至22日00:00来自中央气象台的每3 h实时观测数据
Figure 1. The track of super typhoon Goni based on the best track data from CMA (China Meteorological Administration) at 6-h interval during the period from 1800 UTC 14 to 0000 UTC 27 August 2015. The small picture shows the amplified track based on the real-time observation data of National Meteorological Center at 3-h interval during the period from 0000 UTC 21 to 0000 UTC 22 August 2015
图 2 台风“天鹅”生命史中500 hPa位势高度场(等值线,单位:gpm)及风场(单位:m s-1)的演变:(a)18日00:00;(b)19日00:00;(c)20日00:00;(d)21日00:00;(e)22日00:00;(f)23日00:00。阴影区域为大于5880 gpm,位于东、西两侧的台风标志分别为对应时刻台风“艾莎尼”及“天鹅”的中心位置,“L”标注低压系统,“H”标注高压系统
Figure 2. Evolution of 500-hPa geopotential height (units: gpm) and wind field (units: m s-1) during the life span of typhoon Goni at (a) 0000 UTC 18 August, (b) 0000 UTC 19 August, (c) 0000 UTC 20 August, (d) 0000 UTC 21 August, (e) 0000 UTC 22 August, and (f) 0000 UTC 23 August 2015. Shaded areas indicate geopotential height greater than 5880 gpm. The typhoon symbols in the east and west indicate the center locations of typhoons Asani and Goni, respectively. The letters "L" and "H" represent the low-pressure and high-pressure systems, respectively
图 3 “天鹅”北折前后台风移速(实线)与深层平均(925~300hPa)引导气流(虚线)的(a)纬向分量和(b)经向分量,黑色竖直线指示转向时刻,箭头给出转向前后大致趋势
Figure 3. Time series of (a) the zonal component (units: m s-1) and (b) the meridional component (units: m s-1) of the translation speed of typhoon Goni (solid) and the steering flow averaging from 925 to 300hPa (dashed). The vertical lines indicate the deflection time and the arrows show the trends in the translation speed and steering flow
图 5 8月21日00:00主要影响系统的反演区域及500 hPa高度总扰动位涡场分布。位涡单位:10-2 PVU,阴影区表示扰动位涡绝对值大于0.1 PVU(1 PVU=10-6 m2 s-1 K kg-1),黑色台风标志为对应时刻台风中心位置,“MG”表示季风涡旋,“SH”表示西北太平洋副热带高压,“SA”表示外围反气旋,“AS”表示台风“艾莎尼”
Figure 5. The inversion area of the key impacting systems and total potential vorticity (PV) perturbations at 500 hPa at 0000 UTC 21 August 2015 (units: 10-2 PVU; 1 PVU=10-6 m2 s-1 K kg-1). The areas with PV perturbation absolute values greater than 0.1 PVU are shaded. The typhoon symbol indicates the center location of typhoon Goni; "MG" represents the monsoon gyre system; "SH" represents the Northwest Pacific subtropical high system; "SA" represents the peripheral anticyclone system; "AS" represents typhoon Atsani.
图 6 (a)台风“天鹅”北折前后的移速与分析场移动矢量、总扰动位涡、AS、MG、SH、SA扰动位涡反演的深层平均(925~300 hPa)引导气流分布状况(单位:m s-1)台风标志表示转折时刻。(b)伴随总扰动位涡、AS、MG、SH、SA扰动位涡的引导气流矢量沿台风路径的投影比值变化情况
Figure 6. (a) Time series of Goni's movement from the best-track data[V(BT)], Goni's movement from the final operational global analysis data[V(FNL)], the steering flows averaging from 925 to 300 hPa associated with the total potential vorticity perturbation [Vq(total)] and AS [Vq(AS)], MG[Vq(MG)], SH [Vq(SH)], and SA [Vq(SA)] potential vorticity perturbations (units: m s-1). The typhoon symbol denotes the turning-time. (b) Time series of the along-track component ratios of the steering flows associated with the total potential vorticity perturbation [Vq(total)] and AS [Vq(AS)], MG[Vq(MG)], SH [Vq(SH)], and SA [Vq(SA)] potential vorticity perturbations
图 7 (a)台风“天鹅”北折前后的移速与总扰动位涡反演的引导气流在925 hPa、850 hPa、700 hPa、500 hPa、400 hPa及300 hPa高度层分布状况(单位:m s-1)台风标志表示转折时刻。(b)伴随总扰动位涡的引导气流矢量分别在925 hPa、850 hPa、700 hPa、500 hPa、400 hPa及300 hPa高度层分量沿台风路径的投影比值变化情况
Figure 7. (a) Time series of Goni's movement [V(BT)] and the steering flows associated with total PV perturbation at 925 hPa, 850 hPa, 700 hPa, 500 hPa, 400 hPa, and 300 hPa (units: m s-1). The typhoon symbol denotes the turning-time. (b) Time series of the along-track component ratios of the steering flows associated with total PV perturbation at 925 hPa, 850 hPa, 700 hPa, 500 hPa, 400 hPa, and 300 hPa
-
[1] Carr L E, Elsberry R L. 1995. Monsoonal interactions leading to sudden tropical cyclone track changes[J]. Mon. Wea. Rev., 123 (2):265-289, doi:10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2. [2] Chan J C L, Gray W M. 1982. Tropical cyclone movement and surrounding flow relationships[J]. Mon. Wea. Rev., 110 (10):1354-1374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2. [3] Charney J. 1955. The use of the primitive equations of motion in numerical prediction[J]. Tellus, 7(1):22-26, doi: 10.1111/j.2153-3490.1955.tb01138.x. [4] 陈联寿, 孟智勇. 2001.我国热带气旋研究十年进展[J].大气科学, 25 (3):420-432. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20010311&journal_id=dqkx [5] Chen Lianshou, Meng Zhiyong. 2001. An overview on tropical cyclone research progress in China during the past ten years[J]. Chinese Journal of Atmospheric Sciences, 25 (3):420-432, doi: 10.3878/j.issn.1006-9895.2001.03.11. [6] Davis C A, Emanuel K A. 1991. Potential vorticity diagnostics of cyclogenesis[J]. Mon. Wea. Rev., 119 (8):1929-1953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2. [7] Davis C A. 1992a. A potential vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis[J]. Mon. Wea. Rev., 120 (11):2409-2428, doi:10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2. [8] Davis C A. 1992b. Piecewise potential vorticity inversion[J]. J. Atmos. Sci., 49 (16):1397-1411, doi:10.1175/1520-0469(1992)049<1397:PPVI>2.0. CO;2. [9] 段晶晶, 吴立广, 倪钟萍. 2014. 2004年台风"艾利"与"米雷"路径异常变化分析[J].气象学报, 72 (1):1-11. http://www.cmsjournal.net/qxxb_cn/ch/reader/create_pdf.aspx?file_no=20200224&flag=1&journal_id=qxxb_cn&year_id=2014 [10] Duan Jingjing, Wu Liguang, Ni Zhongping. 2014. Analysis of unusual changes in typhoon Aere (2004) and Meari (2004)[J]. Acta Meteorologica Sinica, 72 (1):1-11, doi: 10.11676/qxxb2014.004. [11] 费建芳, 李波, 黄小刚, 等. 2011.位涡反演理论在台风领域中的应用研究进展[J].大气科学学报, 34 (5):621-626. http://www.cnki.com.cn/Article/CJFDTotal-QXXX201003004.htm [12] Fei Jianfang, Li Bo, Huang Xiaogang, et al. 2011. Advances in application of potential vorticity inversion theory in typhoon research[J]. Trans. Atmos. Sci., 34 (5):621-626, doi: 10.3969/j.issn.1674-7097.2011.05.013. [13] Holland G J. 1983. Tropical cyclone motion:Environmental interaction plus a Beta effect[J]. J. Atmos. Sci., 40 (2):328-342, doi:10.1175/1520-0469 (1983)040<0328:TCMEIP>2.0.CO;2. [14] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps[J]. Quart. J. Roy. Meteor. Soc., 111 (470):877-946, doi: 10.1002/qj.49711147002. [15] Lee C S, Edson R, Gray W M. 1989. Some large-scale characteristics associated with tropical cyclone development in the North Indian Ocean during FGGE[J]. Mon. Wea. Rev., 117 (2):407-426, doi:10.1175/1520-0493(1989)117<0407:SLSCAW>2.0.CO;2. [16] Liang J, Wu L G. 2015. Sudden Track changes of tropical cyclones in monsoon gyres:Full-physics, idealized numerical experiments[J]. J. Atmos. Sci., 72 (4):1307-1322, doi: 10.1175/JAS-D-13-0393.1. [17] 倪钟萍, 吴立广, 张玲. 2013. 2005~2010年台风突变路径的预报误差及其环流背景[J].气象, 39 (6):719-727. doi: 10.7519/j.issn.1000-0526.2013.06.008 [18] Ni Zhongping, Wu Liguang, Zhong Ling. 2013. Analysis on forecasting errors and associated circulations of sudden typhoon track changes during 2005-2010[J]. Meteor. Mon., 39 (6):719-727, doi: 10.7519/j.issn.1000-0526.2013.06.008. [19] Shapiro L J, Franklin J L. 1995. Potential vorticity in hurricane Gloria[J]. Mon. Wea. Rev., 123 (5):1465-1475, doi:10.1175/1520-0493(1995)123<1465:PVIHG>2.0.CO;2. [20] Shi W L, Fei J F, Huang X G, et al. 2014. A numerical study on the combined effect of midlatitude and low-latitude systems on the abrupt track deflection of typhoon Megi (2010)[J]. Mon. Wea. Rev., 142 (7):2483-2501, doi: 10.1175/MWR-D-13-00283.1. [21] Wu C C, Emanuel K A. 1995a. Potential vorticity diagnostics of hurricane movement. Part Ⅰ:A case study of hurricane Bob (1991)[J]. Mon. Wea. Rev., 123 (1):69-92, doi:10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2. [22] Wu C C, Emanuel K A. 1995b. Potential vorticity diagnostics of hurricane movement. Part Ⅱ:Tropical storm Ana (1991) and hurricane Andrew (1992)[J]. Mon. Wea. Rev., 123 (1):93-109, doi:10.1175/1520-0493 (1995)123<0093:PVDOHM>2.0.CO;2. [23] Wu C C, Huang T S, Huang W P, et al. 2003. A new look at the binary interaction:Potential vorticity diagnosis of the unusual southward movement of tropical storm Bopha (2000) and its interaction with supertyphoon Saomai (2000)[J]. Mon. Wea. Rev., 131 (7):1289-1300, doi:10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2. [24] Wu L G, Liang J, Wu C C. 2011. Monsoonal influence on typhoon Morakot (2009). Part Ⅰ:Observational analysis[J]. J. Atmos. Sci., 68 (10):2208-2221, doi: 10.1175/2011JAS3730.1. [25] 许娈, 崔晓鹏, 高守亭, 等. 2015.台风"鲇鱼"(1013)路径突变过程的成因分析[J].大气科学学报, 38 (5):658-669. http://www.doc88.com/p-0807691934835.html [26] Xu Luan, Cui Xiaopeng, Gao Shouting, et al. 2015. Cause analysis of sudden track change of typhoon Megi (1013)[J]. Trans. Atmos. Sci., 38 (5):658-669, doi: 10.13878/j.cnki.dqkxxb.20130301001. [27] Yang C C, Wu C C, Chou K H, et al. 2008. Binary interaction between typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis[J]. Mon. Wea. Rev., 136 (12):4593-4611, doi: 10.1175/2008MWR2496.1. [28] 禹梁玉, 方娟. 2013.台风"鲇鱼"(2010)过程影响系统分析[J].南京大学学报(自然科学), 49 (3):285-299. http://www.cqvip.com/QK/95251X/201303/46233306.html [29] Yu Liangyu, Fang Juan. 2013. An analysis on the impact system of typhoon MEGI (2010)[J]. J. Nanjing Univ. (Nat. Sci.), 49 (3):285-299, doi:10.13232/j.cnki.jnju. 2013.03.008. [30] 张娇艳, 吴立广, 张强. 2011.全球变暖背景下我国热带气旋灾害趋势分析[J].热带气象学报, 27 (4):442-454. http://www.cqvip.com/qk/97398x/199602/2206051.html [31] Zhang Jiaoyan, Wu Liguang, Zhang Qiang. 2011. Tropical cyclone damages in China under the background of global warming[J]. J. Trop. Meteor., 27 (4):442-454, doi: 10.3969/j.issn.1004-4965.2011.04.002. [32] 周毅, 寇正, 王云峰. 1998.气旋生成机制的位涡反演诊断[J].气象科学, 18 (2):121-127. http://www.oalib.com/paper/4179799 [33] Zhou Yi, Kou Zheng, Wang Yunfeng. 1998. Potential vorticity invertibility diagnostic of cyclogenesis mechanism[J]. Sci. Meteor. Sinica, 18 (2):121-127. doi: 10.1175/1520-0493%281991%29119%3C1929%3APVDOC%3E2.0.CO%3B2 -