高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅱ.实际应用

沙莎 沈新勇 李小凡

沙莎, 沈新勇, 李小凡. 一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅱ.实际应用[J]. 大气科学, 2018, 42(5): 1119-1132. doi: 10.3878/j.issn.1006-9895.1710.17196
引用本文: 沙莎, 沈新勇, 李小凡. 一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅱ.实际应用[J]. 大气科学, 2018, 42(5): 1119-1132. doi: 10.3878/j.issn.1006-9895.1710.17196
Sha SHA, Xinyong SHEN, Xiaofan LI. The Study of Multi-scale Energy Interactions during a Meiyu Front Rainstorm. Part Ⅱ: Practical Application[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 1119-1132. doi: 10.3878/j.issn.1006-9895.1710.17196
Citation: Sha SHA, Xinyong SHEN, Xiaofan LI. The Study of Multi-scale Energy Interactions during a Meiyu Front Rainstorm. Part Ⅱ: Practical Application[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 1119-1132. doi: 10.3878/j.issn.1006-9895.1710.17196

一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅱ.实际应用

doi: 10.3878/j.issn.1006-9895.1710.17196
基金项目: 

国家自然科学基金项目 41530427

国家自然科学基金项目 41790471

国家自然科学基金项目 41475039

国家重点基础研究发展计划(973计划)项目 2015CB453201

详细信息
    作者简介:

    沙莎, 女, 1992年出生, 硕士研究生, 主要从事中尺度气象学研究。E-mail:nuist_ss@163.com

    通讯作者:

    沈新勇, E-mail:shenxy@nuist.edu.cn

  • 中图分类号: P433

The Study of Multi-scale Energy Interactions during a Meiyu Front Rainstorm. Part Ⅱ: Practical Application

Funds: 

National Natural Science Foundation of China 41530427

National Natural Science Foundation of China 41790471

National Natural Science Foundation of China 41475039

National Basic Research Program of China (973 Program) 2015CB453201

  • 摘要: 本文利用中国自动站与CMORPH(Climate Prediction Center Morphing technique for the production of global precipitation estimates)融合的逐时降水量0.1°网格数据集资料挑选出一次典型的梅雨锋暴雨个例,运用WRF中小尺度模式进行模拟,对模拟得到的高分辨率结果进行Barnes滤波,最后将滤波结果代入动能和位能方程中,目的是定量地分析各个尺度能量的变化以及它们之间的相互作用对暴雨强度的影响。研究发现:模式模拟的降水过程和强度与实况较为吻合,推导的能量方程适用于这次暴雨过程。三种尺度能量之间的相互作用包含了各种跨尺度能量的相互作用。在整个暴雨过程中,跨尺度之间的斜压能量转换包括位能向动能的能量转换和动能向位能的能量转换。同尺度之间的斜压能量转换总是单向的,且量值较大,动能的强度主要靠位能向动能的能量转换来维持。斜压能量转换的多少影响着暴雨的强弱。大尺度斜压能量转换在中高层比较强,中尺度斜压能量转换在低层较强,尤以β中小尺度系统变化最为显著,β中小尺度系统扰动是影响暴雨强度的关键系统。风切变的大小影响各尺度动能之间的能量转换。温度或位温梯度的大小影响各尺度位能之间的能量转换。位能与动能之间的能量转换主要与各尺度垂直速度和温度的垂直分布有关,暖空气上升冷空气下沉是各个尺度位能向动能转换的主要过程。
  • 图  1  2016年6月30日08:00至7月1日08:00 24 h累积降水量(单位:mm):(a)中国自动站与CMORPH融合;(b)WRF模式模拟

    Figure  1.  4-h accumulated precipitation from (a) the fusion of observations at automatic stations in China and CMORPH rainfall data, (b) WRF model simulation from 0800 UTC 30 June to 0800 UTC 1 July 2016 (units: mm)

    图  2  2016年(a、e)6月30日08:00~14:00、(b、f)6月30日14:00~20:00、(c、g)6月30日20:00至7月1日02:00以及(d、h)7月1日02:00~ 08:00各时段期间6 h累积降水量(单位:mm):(a–d)中国自动站与CMORPH融合;(e–f)WRF模式模拟

    Figure  2.  6-h accumulated precipitation from (a–d) the fusion of observations at automatic stations and CMORPH rainfall data, (e–f) simulation of WRF model (a, e) from 0800 UTC to 1200 UTC 30 June, (b, f) from 1400 UTC to 2000 UTC 30 June, (c, g) from 2000 UTC 30 June to 0200 UTC 1 July, (d, h) from 0200 UTC to 0800 UTC 1 July 2016

    图  3  整个暴雨过程中,2.5~12.5 km对流层动能(左列)和位能(右列)平均值的分布:(a、d)大尺度;(b、e)α中尺度;(c、f)β中小尺度

    Figure  3.  The distribution of the averaged kinetic energy (left column, units: 10-3 J kg-1) and potential energy (right column, units: 10-3 J kg-1) from 2.5 km to 12.5 km height during the whole rainstorm process: (a, d) Large scale; (b, e) meso-α scale; (c, f) meso-micro-β scale

    图  4  整个暴雨过程中(a)3 km高度平均假相当位温θse(单位:K)和风速(单位:m s-1)的分布;(b)主要降水区(图 4a虚线区域)逐小时降水量(单位:103 mm)随时间的变化(黑色圆圈表示逐小时降水量最大值)

    Figure  4.  (a) Averaged θse (units: K) and wind (units: m s-1) at 3 km height; (b) variation of hourly precipitation (units: mm) during the whole rainstorm process over the area enclosed by dashed line in Fig. 4a (the black circle indicates the maximum value of hourly precipitation)

    图  5  图 3虚线区域内动能(左列,虚线)和位能(右列,虚线)以及逐小时总降水量(单位:103 mm;实线)随时间的变化:(a、d)大尺度;(b、e)α中尺度;(c、f)β中小尺度

    Figure  5.  Variation of (a–c) kinetic energy (units: 10-3J kg-1; dashed line), (d–f) potential energy (units: 10-3 J kg-1; dashed line), and hourly total precipitation (units: 103 mm; solid line) in the area enclosed by dashed line in Fig. 3: (a, d) Large scale; (b, e) meso-α scale; (c, f) meso-micro-β scale

    图  6  对流层整层(2.5~10.5 km平均)动能(单位:10−3 J kg−1)和位能(单位:10−3 J kg−1)之间在(a)暴雨增强阶段和(b)减弱阶段的相互作用(矢量箭头表示能量在暴雨增强或减弱阶段的转换方向,短箭头表示动能或位能的增加或减小趋势,下同)

    Figure  6.  Energy interactions between kinetic energy (units: 10−3 J kg−1) and potential energy (units: 10−3 J kg−1) during (a) the strengthening phase and (b) the weakening phase of rainstorm over the entire troposphere (2.5–10.5 km averaged). The vector arrows indicates the transformation direction of energy during the strengthening or weakening phase of rainstorm, short arrows indicate the increase or decrease tendency of kinetic energy or protential energy, the same below

    图  7  暴雨(a)增强阶段和(b)减弱阶段β中小尺度位能向动能的平均斜压能量转换(单位:10−3 J kg−1

    Figure  7.  Averaged baroclinic energy conversion (units:10−3 J kg−1) from potential energy to kinetic energy of meso-micro-β scale during (a) the strengthening phase of rainstorm and (b) the weakening phase of rainstorm

    图  8  对流层高层(8.5~10.5 km平均)动能(单位:10−3 J kg−1)和位能(单位:10−3 J kg−1)之间在暴雨(a)增强阶段和(b)减弱阶段的相互作用

    Figure  8.  Energy interactions between kinetic energy (units: 10−3 J kg−1) and potential energy (units:10−3 J kg−1) during (a) the strengthening phase and (b) the weakening phase of rainstorm over the upper troposphere (8.5−10.5 km averaged)

    图  9  对流层中层(5~6.5 km平均)动能(单位:10-3 J kg-1)和位能(单位:10-3 J kg-1)之间在暴雨(a)增强阶段和(b)减弱阶段的相互作用

    Figure  9.  ergy (units: 10-3 J kg-1) and potential energy (units: 10-3 J kg-1) during (a) the strengthening phase and (b) the weakening phase of rainstorm over the middle troposphere (5–6.5 km averaged)

    图  10  对流层低层(2.5~3.5km平均)动能(单位:10-3 J kg-1)和位能(单位:10-3 J kg-1)之间在暴雨(a)增强阶段和(b)减弱阶段的相互作用

    Figure  10.  Energy interactions between kinetic energy (units: 10-3 J kg-1) and potential energy (units: 10-3 J kg-1) during (a) the strengthening phase and (b) the weakening phase of rainstorm over the middle troposphere (2.5–3.5 km averaged)

    图  11  主要降水区域(图 3虚线区)内(a、d)大尺度、(b、e)α中尺度和(c、f)β中小尺度的风速梯度(第一行;单位:10−5 s−1)和位温梯度(第二行;单位:10−5 ℃ m−1)在对流层整层的平均分布

    Figure  11.  Wind speed gradient (first row, units: 10−5 s−1) and potential temperature gradient (second row, units: 10−5 ℃ m−1) of (a, d) large scale, (b, e) meso-α scale, and (c, f) meso-micro-β scale averaged over the entire troposphere in the area enclosed by dashed line in Fig. 3

    图  12  主要降水区域(图 3虚线区)内(a、d)大尺度、(b、e)α中尺度和(c、f)β中小尺度的垂直速度(第一行;单位:10−2 m s−1)和温度(第二行;单位:℃)的纬向—高度剖面(29.5°~33°N平均)

    Figure  12.  Height–latitude cross sections (averaged over 29.5°–33°N) of vertical velocity (first row, units: 10−2 m s−1) and temperature (second row, units: ℃) of (a, d) large scale, (b, e) meso-α scale, and (c, f) meso-micro-β scale over the area enclosed by dashed line in Fig. 3

    表  1  动能和位能方程中部分项在暴雨增强和减弱阶段的对流层整层平均情况

    Table  1.   Averaged values of some items from the energy equations during the period of strengthening and weakening phases of the rainstorm over the entire troposphere

  • [1] Bosart L F. 1984. The Texas coastal rainstorm of 17-21 September 1979:An example of synoptic mesoscale interaction[J]. Mon. Wea. Rev., 112 (6):1108-1133, doi:10.1175/1520-0493(1984)112<1108:TTCROS>2.0.CO; 2.
    [2] Chen S J, Kuo Y H, Wang W, et al. 1998. A modeling case study of heavy rainstorms along the Mei-Yu front[J]. Mon. Wea. Rev., 126 (9):2330-2351, doi:10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO; 2.
    [3] 丁一汇. 2014.陶诗言先生在中国暴雨发生条件和机制研究中的贡献[J].大气科学, 38 (4):616-626. doi: 10.3878/j.issn.1006-9895.2013.13226

    Ding Yihui. 2014. Contributions of Prof. Shiyan Tao to the study of formation conditions and mechanisms of heavy rainfall in China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (4):616-626, doi: 10.3878/j.issn.1006-9895.2013.13226.
    [4] Fu S M, Sun J H, Ling J, et al. 2016a. Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season[J]. J. Geophys. Res. Atmos., 121 (21):12856-12876, doi: 10.1002/2016JD025446.
    [5] Fu S M, Wang H J, Sun J H, et al. 2016b. Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010[J]. J. Meteor. Res., 30 (4):513-527, doi: 10.1007/s13351-016-5121-3.
    [6] 胡邦辉, 张维桓, 孙志斌. 1996.几种滤波器对地面飑线场的中尺度滤波试验[J].气象科学, 16 (2):165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600422337

    Hu Banghui, Zhang Weihuan, Sun Zhibin. 1996. The mesoscale squall line experiment based on several-filters[J]. J. Meteor. Sci. (in Chinese), 16 (2):165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600422337
    [7] Kucharski F, Thorpe A J. 2000. Local energetics of an idealized baroclinic wave using extended exergy[J]. J. Atmos. Sci., 57 (19):3272-3284, doi:10.1175/1520-0469(2000)057<3272:LEOAIB>2.0.CO; 2.
    [8] 李琴, 杨帅, 崔晓鹏, 等. 2016.四川暴雨过程动力因子指示意义与预报意义研究[J].大气科学, 40 (2):341-356. doi: 10.3878/j.issn.1006-9895.1507.14296

    Li Qin, Yang Shuai, Cui Xiaopeng, et al. 2016. Diagnosis and forecasting of dynamical parameters for a heavy rainfall event in Sichuan Province[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (2):341-356, doi:10.3878/j.issn. 1006-9895.1507.14296.
    [9] 廖捷, 谈哲敏. 2005.一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用[J].气象学报, 63 (5):771-789. doi: 10.11676/qxxb2005.074

    Liao Jie, Tan Zhemin. 2005. Numerical simulation of a heavy rainfall event along the Meiyu front:Influences of different scale weather systems[J]. Acta Meteor. Sinica (in Chinese), 63 (5):771-789, doi:10.11676/qxxb2005. 074.
    [10] 隆霄, 程麟生. 2004. "99·6"梅雨锋暴雨低涡切变线的数值模拟和分析[J].大气科学, 28 (3):342-356. doi: 10.3878/j.issn.1006-9895.2004.03.03

    Long Xiao, Cheng Linsheng. 2004. Numerical simulation and analysis for "99.6" Meiyu front rainstorm and the low vortex with shear line[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (3):342-356, doi:10.3878/j.issn.1006-9895. 2004.03.03.
    [11] 陆汉城, 成巍, 朱民, 等. 2002.梅雨锋致洪暴雨的β中尺度涡旋机理的分析[J].解放军理工大学学报(自然科学版), 3 (4):70-76. doi: 10.3969/j.issn.1009-3443.2002.04.018

    Lu Hancheng, Cheng Wei, Zhu Min, et al. 2002. Mechanism study of meso-β scale vortex system of heavy rain in Meiyu front[J]. Journal of PLA University of Science and Technology, 3 (4):70-76, doi: 10.3969/j.issn.1009-3443.2002.04.018.
    [12] 毛文书, 彭骏, 周强, 等. 2008.基于Barnes滤波原理的降水场客观分析及尺度分离[J].成都信息工程学院学报, 23 (6):668-672. doi: 10.3969/j.issn.1671-1742.2008.06.016

    Mao Wenshu, Peng Jun, Zhou Qiang, et al. 2008. Objective analysis and scale separation of precipitation field based on Barnes wave filtration theory of meteorological stations[J]. Journal of Chengdu University of Information Technology, 23 (6):668-672, doi: 10.3969/j.issn.1671-1742.2008.06.016.
    [13] Murakami S. 2011. Atmospheric local energetics and energy interactions between mean and eddy fields. Part Ⅰ:Theory[J]. J. Atmos. Sci., 68 (4):760-768, doi: 10.1175/2010JAS3664.1.
    [14] 沈新勇, 姜晓岑, 柳笛, 等. 2017.利用WRF-Chem模式模拟分析人为气溶胶对台风Fitow(1323)强度及降水的影响[J].大气科学, 41 (5):960-974. doi: 10.3878/j.issn.1006-9895.1703.16216

    Shen Xinyong, Jiang Xiaocen, Liu Di, et al. 2017. Simulations of anthropogenic aerosols effects on the intensity and precipitation of typhoon Fitow (1323) using WRF-Chem model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41 (5):960-974, doi: 10.3878/j.issn.1006-9895.1703.16216.
    [15] 沈新勇, 沙莎, 李小凡. 2018.一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅰ.理论分析[J].大气科学, 42 (5):1109-1118. doi: 10.3878/j.issn.1006-9895.1710.17195

    Shen Xinyong, Sha Sha, Li Xiaofan, et al. 2018. The study of multi-scale energy interactions during a Meiyu front rainstorm. Part Ⅰ:Theoretical analysis[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42 (5):1109-1118, doi: 10.3878/j.issn.1006-9895.1710.17195.
    [16] 陶诗言. 1977.有关暴雨分析预报的一些问题[J].大气科学, 1 (1):64-72. doi: 10.3878/j.issn.1006-9895.1977.01.10

    Tao Shiyan. 1977. Some aspects on the analysis and forecast of the heavy rainfall[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 1(1):64-72, doi:10.3878/j.issn. 1006-9895.1977.01.10.
    [17] 陶诗言. 1980.中国之暴雨[M].北京:科学出版社.

    Tao Shiyan. 1980. Heavy Rain in China (in Chinese)[M]. Beijing:Science Press.
    [18] 汪亚萍, 崔晓鹏, 冉令坤, 等. 2015.动力因子对2006"碧利斯"台风暴雨的诊断分析[J].大气科学, 39 (4):747-756. doi: 10.3878/j.issn.1006-9895.1411.14184

    Wang Yaping, Cui Xiaopeng, Ran Lingkun, et al. 2015. Diagnosis of dynamical parameters in torrential rain associated with typhoon "Bilis" in 2006[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (4):747-756, doi: 10.3878/j.issn.1006-9895.1411.14184.
    [19] 夏大庆, 郑良杰, 董双林, 等. 1983.气象场的几种中尺度分离算子及其比较[J].大气科学, 7 (3):303-311. doi: 10.3878/j.issn.1006-9895.1983.03.08

    Xia Daqing, Zheng Liangjie, Dong Shuanglin, et al. 1983. Some operators for separating meso-scale meteorological fields and their comparisons[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 7 (3):303-311, doi: 10.3878/j.issn.1006-9895.1983.03.08.
    [20] 徐元泰, 丁一汇. 1988.气象场的客观分析和中尺度滤波[J].大气科学, 12 (3):274-282. doi: 10.3878/j.issn.1006-9895.1988.03.07

    Xu Yuantai, Ding Yihui. 1988. Objective analysis of meteorological fields and meso-scale filtering[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12 (3):274-282, doi: 10.3878/j.issn.1006-9895.1988.03.07.
    [21] 尹洁, 郑婧, 张瑛, 等. 2011.一次梅雨锋特大暴雨过程分析及数值模拟[J].气象, 37 (7):827-837. doi: 10.7519/j.issn.1000-0526.2011.07.007

    Yin Jie, Zhen Jing, Zhang Ying, et al. 2011. Analysis and numerical simulation of a heavy rainfall event along the Mei-yu front.[J]. Meteorological Monthly, 37 (7):827-837. doi: 10.7519/j.issn.1000-0526.2011.07.007.
    [22] 于杰, 张继权, 张铭. 2014. EOF分析用于β中尺度暴雨系统的探索[J].大气科学, 38 (4):795-803. doi: 10.3878/j.issn.1006-9895.2013.13257

    Yu Jie, Zhang Jiquan, Zhang Ming. 2014. Study on meso-β scale torrential rain with EOF[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (4):795-803, doi:10.3878/j.issn. 1006-9895.2013.13257.
    [23] 张顺利, 陶诗言, 张庆云, 等. 2002.长江中下游致洪暴雨的多尺度条件[J].科学通报, 47 (6):467-473. doi: 10.3321/j.issn:0023-074X.2002.06.017

    Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2002. Multiscale conditions of flood rainstorm along the Yangtze River[J]. Chinese Science Bulletin, 47 (6):467-473, doi: 10.3321/j.issn:0023-074X.2002.06.017.
    [24] 赵玉春, 王叶红, 崔春光. 2011.一次典型梅雨锋暴雨过程的多尺度结构特征[J].大气科学学报, 34 (1):14-27. doi: 10.3969/j.issn.1674-7097.2011.01.003

    Zhao Yuchun, Wang Yehong, Cui Chunguang. 2011. Multi-scale structure features of a typical Mei-yu frontal rainstorm process[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 34 (1):14-27, doi:10.3969/j.issn.1674-7097. 2011.01.003.
    [25] 周海光, 王玉彬. 2005. 2003年6月30日梅雨锋大暴雨β和γ中尺度结构的双多普勒雷达反演[J].气象学报, 63 (3):301-312. doi: 10.11676/qxxb2005.030

    Zhou Haiguang, Wang Yubin. 2005. Structure of meso-β and-γ-scale on Meiyu in Huaihe River basin on 30 June, 2003 by dual-Doppler radar[J]. Acta Meteor. Sinica (in Chinese), 63 (3):301-312, doi:10.11676/qxxb2005. 030.
    [26] 周玉淑. 2009.广义湿位涡在江淮流域暴雨分析和预报中的应用[J].大气科学, 33 (5):1101-1110. doi: 10.3878/j.issn.1006-9895.2009.05.19

    Zhou Yushu. 2009. Application of generalized moist potential vorticity to analysis and forecast of the torrential rain over the Changjiang-Huaihe River Basin[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (5):1101-1110, doi: 10.3878/j.issn.1006-9895.2009.05.19.
    [27] 朱乾根, 林锦瑞, 寿绍文. 1981.天气学原理和方法[M].气象出版社.

    Zhu Qiangen, Lin Jinrui, Shou Shaowen. 1981. Synoptic Principles and Methods (in Chinese)[M]. Beijing:China Meteorological Press.
    [28] 朱乾根, 周伟灿, 张海霞. 2001.高低空急流耦合对长江中游强暴雨形成的机理研究[J].南京气象学院学报, 24 (3):308-314. doi: 10.3969/j.issn.1674-7097.2001.03.002

    Zhu Qiangen, Zhou Weican, Zhang Haixia. 2001. Mechanism of the formation of torrential rain by coupled high/low level jets over the middle reaches of the Yangtze River[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 24 (3):308-314, doi: 10.3969/j.issn.1674-7097.2001.03.002.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  0
  • PDF下载量:  935
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-22
  • 网络出版日期:  2017-11-16
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回