Differences in Intraseasonal Activity of Eurasian Subtropical Zonal Wave Train and Associated Indian Summer Rainfall in Two Opposite AMO Phases
-
摘要: 利用美国国家环境预测中心与国家大气研究中心(NCEP/NCAR)逐日再分析资料,针对北大西洋多年代际振荡(AMO)两个不同位相,对逐候200 hPa经向风异常进行EOF分析,发现在AMO正、负位相期间,欧亚副热带波列的季节内活动存在明显差异。利用超前—滞后回归,对比了不同AMO位相下副热带波列及其相联系的印度夏季降水的季节内活动演变特征,分析有关的大气环流,探究波列影响降水的机制。结果表明:在AMO负位相期间,由格陵兰岛以南北大西洋经大不列颠岛、地中海、黑海—里海向南亚北部传播的副热带波列的季节内演变,在印度中部引起下沉,导致中部及西北部季节内降水减少,波列负位相相反;在AMO正位相期间,副热带波列西起冰岛以南北大西洋经丹麦南部、俄罗斯西部、中亚向南亚东北部传播,对应该波列的季节内演变,辐合上升区在印度中部和东西两侧,使得该区域季节内降水增加,波列负位相相反。于是,AMO通过调制夏季欧亚副热带波列的季节内活动,可以对印度夏季降水的季节内变化空间型及演变发挥显著影响。
-
关键词:
- 北大西洋多年代际振荡 /
- 波列 /
- 季节内变化 /
- 印度夏季降水
Abstract: By using daily variables extracted from the NCEP/NCAR reanalysis, this study compares the intraseasonal activities of the Eurasian summer subtropical wave train during the two opposite phases of the Atlantic Multidecadal Oscillation (AMO). Significant difference is found based on pentadic mean 200-hPa meridional wind component. The associated intraseasonal variability of Indian summer precipitation is also different during the two AMO phases. Lead-lag regressions of 500-hPa wind field and vertical motion are then conducted to illustrate the AMO's modulation on the subtropical wave train and the Indian summer rainfall. The results suggest that during the AMO negative phase, the intraseasonal evolution of the positive-phase subtropical wave train has positive centers over the Great Britain and the Black-Caspian Sea but negative centers over the North Atlantic south of Greenland, the Mediterranean and north of South Asia in 200-hPa height. This pattern of wave train induces anomalous subsidence and reduced rainfall in central and northwestern India. It is opposite for the negative-phase subtropical wave train. In contrast, during the positive AMO phase, positive-phase subtropical wave train originates from the North Atlantic south of Iceland and propagates toward northeastern South Asia via southern Denmark, western Russia and central Asia. The intraseasonal evolution of this wave train leads to anomalous convergence and increased rainfall in most areas of India. It is opposite for the negative-phase subtropical wave train. This study highlights the AMO's modulation on intraseasonal variability of Indian summer rainfall through influencing the Eurasian summer subtropical wave train. -
图 1 AMO(a)负位相期和(b)正位相期夏季副热带波列年际变率分布型的对比。这里用200 hPa位势高度场对季节平均经向风分量EOF第一模态时间序列的回归来表示副热带波列(单位:gpm)。(a)基于1970~1990年(AMO处于负位相);(b)基于1995~2014年(AMO处于负位相)。第一模态的方差贡献率分别为33.1%和20.4%
Figure 1. Comparison of subtropical wave trains in Northern Hemisphere summer during (a) negative (1970–1990) and (b) positive (1995–2014) AMO phases. Here the wave train is represented by the regression of geopotential height onto time series of the first EOF mode of seasonal mean meridional wind component (units: gpm). The first EOF mode explains 33.1% and 20.4% of the total variance in the two opposite AMO phases, respectively
图 3 AMO(a)负、(b)正位相期间200 hPa候平均经向风EOF1时间系数的平均功率谱对比。实线和虚线分别代表 90%和95%的红噪声显著性水平
Figure 3. Comparison of the power spectra of the leading EOF time coefficient series of 200-hPa pentad meridional wind component during (a) the AMO negative phase and (b) the AMO positive phase. The solid and dashed lines represent the upper bounds of red noise at the 90% and 95% significance levels, respectively
图 4 200 hPa位势高度(等值线,单位:gpm)和Plumb二维波作用通量(矢量,单位:10−11 m2 s−2)对AMO负位相期间副热带波列指数的超前—滞后回归。图中等值线间隔为10。为便于比较,另外给出−5和5的等值线。分图顶部“lag=”后的−3、−2、−1、0、1、2分别代表位势高度场超前经向风3候、2候、1候,二者同期以及滞后1候、2候。阴影区表示高度异常通过了95%的显著性检验
Figure 4. Lead–lag regressions of 200-hPa geopotential height (contours, units: gpm) and Plumb wave activity flux (vectors, units:10−11 m2 s−2)) against the subtropical wave train index (i.e. the EOF1 time coefficient of pentadic meridional wind component) during the negative phase of AMO. The contour interval is 10. For comparison, the two contours of 5 and −5 are displayed additionally. The digitals −3, −2, −1, 0, 1, 2 following "lag=" at the top of each panel indicate that the geopotential height or the wave flux leads the wave train by 3, 2, 1, 0, −1, −2 pentads, respectively. Shadings indicate significance at the 95% confidence level
图 6 南亚夏季季节内降水量(阴影,单位:mm d-1)对AMO负位相期间副热带波列指数的超前—滞后回归。子图顶部标识分别代表降水超前波列3候、2候、1候、0候(二者同期),以及滞后1候、2候。绿色曲线包围的区域代表通过了95%的显著性检验
Figure 6. Lead–lag regressions of South Asia intraseasonal summer rainfall against the subtropical wave train index during the negative phase of AMO (shadings, units: mm d-1). The marks at the top of each individual panel indicate the time (units: pentads) the rainfall leads (negative number) or lags (positive number) the wave train. The green contours indicate significance at the 95% confidence level
图 8 500 hPa水平风(矢量,单位:m s-1)、位势高度(等值线,单位:gpm)和气压垂直速度(填色,单位:10-3Pa s-1)对AMO(a–c)负位相期间和(d–f)正位相期间副热带波列指数的超前—滞后回归。超前—滞后值-2、0、2分别代表要素超前波列2候,二者同期以及滞后波列2候
Figure 8. Lead–lag regressions of 500-hPa horizontal wind (vectors, units: m s-1), geopotential height (contours, units: gpm) and pressure vertical velocity (shadings, units: 10-3 Pa s-1) against the subtropical wave train index during (a–c) the negative phase and (d–f) the positive phase of AMO. The marks at the top of each individual panel indicate the time (units: pentads) the variables lead (negative number) or lags (positive number) the wave train index
图 9 同图 8,但为南亚区域纬向平均(经度范围72.5°~87.5°E)的涡度(阴影,单位: 10-6 s-1)和散度(等值线,单位: 10-7 s-1)对AMO(a–c)负位相期间和(d–f)正位相期间副热带波列指数的回归随纬度、垂直等压面的分布
Figure 9. Same as Fig. 8, but for latitudinal–vertical distributions of regressions of zonally-averaged vorticity (shadings, units: 10-6 s-1) and divergence (contours, unit: 10-7 s-1) against the subtropical wave train index during (a–c) the negative phase and (d–f) the positive phase of AMO over the South Asian region (72.5°–87.5°E)
图 10 南亚夏季逐候降水量EOF分解的(a)第1特征向量和(b)第2特征向量,及其(c)EOF1时间系数的概率密度函数(Probability Density Function, PDF)在AMO(实线)正位相和(虚线)负位相的比较,(d)同(c)但为EOF2
Figure 10. (a) The first and (b) second EOF modes of South Asian intraseasonal rainfall; (c, d) The probability density functions (PDFs) of the time coefficients of the two EOF modes. The solid and dashed lines in (c, d) represent the PDFs corresponding to the positive and negative phases of AMO, respectively
-
[1] Bjerknes J. 1964. Atlantic air-sea interaction[J]. Advances in Geophysics, 10:1-82, doi: 10.1016/S0065-2687(08)60005-9. [2] Branstator G. 2002. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation[J]. J. Climate, 15:1893-1910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO; 2. [3] Delworth T L, Mann M E. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dyn., 16:661-676, doi: 10.1007/s003820000075. [4] Ding Q H, Wang B. 2005. Circumglobal teleconnection in the Northern Hemisphere summer[J]. J. Climate, 18:3483-3505, doi: 10.1175/JCLI3473. [5] Ding Q H, Wang B. 2007. Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon[J]. J. Climate, 20:3751-3767, doi: 10.1175/JCLI4221.1. [6] Enfield D B, Mestas-Nuñez A M, Trimble P J. 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S.[J]. Geophys. Res. Lett., 28:2077-2080, doi: 10.1029/2000GL012745. [7] Enomoto T. 2004. Interannual variability of the Bonin High associated with the propagation of Rossby waves along the Asian Jet[J]. J. Meteor. Soc. Japan, 82:1019-1034, doi: 10.2151/jmsj.2004.1019. [8] Feng S, Hu Q. 2008. How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia[J]. Geophys. Res. Lett., 35:L01707, doi: 10.1029/2007GL032484. [9] Folland C K, Parker D E. 1990. Observed variations of sea surface temperature[M]//Schlesinger M E. Climate-Ocean Interaction. Dordrecht: Springer, 21-52, doi: 10.1007/978-94-009-2093-4_2. [10] Folland C K, Colman A W, Rowell D P, et al. 2001. Predictability of Northeast Brazil rainfall and real-time forecast skill, 1987-98[J]. J. Climate, 14:1937-1958, doi:10.1175/1520-0442(2001)014<1937:PONBRA>2.0.CO; 2. [11] Goldenberg S B, Landsea C W, Mestas-Nuñez A M, et al. 2001. The recent increase in Atlantic hurricane activity:Causes and implications[J]. Science, 293:474-479, doi: 10.1126/science.1060040. [12] Goswami B N, Madhusoodanan M S, Neema C P, et al. 2006. A physical mechanism for North Atlantic SST influence on the Indian summer monsoon[J]. Geophys. Res. Lett., 33:L02706, doi: 10.1029/2005GL024803. [13] Hao X, He S P, Wang H J. 2016. Asymmetry in the response of central Eurasian winter temperature to AMO[J]. Climate Dyn., 47:2139-2154, doi: 10.1007/s00382-015-2955-9. [14] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77:437-472, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO; 2. [15] Kerr R A. 2000. A North Atlantic climate pacemaker for the centuries[J]. Science, 288:1984-1985, doi: 10.1126/science.288.5473.1984. [16] Knight J R, Folland C K, Scaife A A. 2006. Climate impacts of the Atlantic multidecadal oscillation[J]. Geophys. Res. Lett., 33:L17706, doi: 10.1029/2006GL026242. [17] Kosaka Y, Chowdary J S, Xie S P, et al. 2012. Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific[J]. J. Climate, 25:7574-7589, doi: 10.1175/JCLI-D-12-00009.1. [18] Kushnir Y. 1994. Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions[J]. J. Climate, 7:141-157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO; 2. [19] Li S L, Bates G T. 2007. Influence of the Atlantic multidecadal oscillation on the winter climate of East China[J]. Advances in Atmospheric Sciences, 24:126-135, doi: 10.1007/s00376-007-0126-6. [20] Li S L, Perlwitz J, Quan X W, et al. 2008. Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall[J]. Geophys. Res. Lett., 35:L05804, doi: 10.1029/2007GL032901. [21] Lu R Y, Oh J H, Kim B J. 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer[J]. Tellus, 54:44-55, doi: 10.3402/tellusa.v54i1.12122. [22] Lu R Y, Dong B W, Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon[J]. Geophys. Res. Lett., 33:L24701, doi: 10.1029/2006GL027655. [23] Luo F F, Li S L, Furevik T. 2011. The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in Bergen climate model version 2.0[J]. J. Geophys. Res. Atmos., 116:D19117, doi: 10.1029/2011JD015848. [24] Mann M E, Park J. 1994. Global-scale modes of surface temperature variability on interannual to century timescales[J]. J. Geophys. Res. Atmos., 99:25819-25833, doi: 10.1029/94JD02396. [25] Schlesinger M E, Ramankutty N. 1994. An oscillation in the global climate system of period 65-70 years[J]. Nature, 367:723-726, doi: 10.1038/367723a0. [26] Sutton R T, Hodson D L R. 2005. Atlantic Ocean forcing of North American and European summer climate[J]. Science, 309:115-118, doi: 10.1126/science.1109496. [27] Sutton R T, Hodson D L R. 2007. Climate response to basin-scale warming and cooling of the North Atlantic Ocean[J]. J. Climate, 20:891-907, doi: 10.1175/JCLI4038. [28] Wang Y M, Li S L, Luo D H. 2009. Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation[J]. J. Geophys. Res. Atmos., 114:D02112, doi: 10.1029/2008JD010929. [29] 吴捷, 许小峰, 金飞飞, 等. 2013.东亚-太平洋型季节内演变和维持机理研究[J].气象学报, 71:476-491. doi: 10.11676/qxxb2013.038Wu Jie, Xu Xiaofeng, Jin Feifei, et al. 2013. Research of the intraseasonal evolution of the East Asia Pacific pattern and the maintenance mechanism[J]. Acta Meteorologica Sinica (in Chinese), 71:476-491, doi: 10.11676/qxxb2013.038. [30] Yatagai A, Arakawa O, Kamiguchi K, et al. 2009. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. SOLA, 5:137-140, doi: 10.2151/sola.2009-035. [31] Zhang R, Delworth T L. 2006. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes[J]. Geophys. Res. Lett., 33:L17712, doi: 10.1029/2006GL026267. [32] Zhou X M, Li S L, Luo F F, et al. 2015. Air-sea coupling enhances the East Asian winter climate response to the Atlantic multidecadal oscillation[J]. Advances in Atmospheric Sciences, 32:1647-1659, doi: 10.1007/s00376-015-5030-x. -