高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气气溶胶的卫星遥感及其在气候和环境研究中的应用

陈洪滨 范学花 夏祥鳌

陈洪滨, 范学花, 夏祥鳌. 大气气溶胶的卫星遥感及其在气候和环境研究中的应用[J]. 大气科学, 2018, 42(3): 621-633. doi: 10.3878/j.issn.1006-9895.1801.17272
引用本文: 陈洪滨, 范学花, 夏祥鳌. 大气气溶胶的卫星遥感及其在气候和环境研究中的应用[J]. 大气科学, 2018, 42(3): 621-633. doi: 10.3878/j.issn.1006-9895.1801.17272
Hongbin CHEN, Xuehua FAN, Xiang'ao XIA. Review of Satellite Remote Sensing of Atmospheric Aerosols and Its Applications in Climate and Environment Studies[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 621-633. doi: 10.3878/j.issn.1006-9895.1801.17272
Citation: Hongbin CHEN, Xuehua FAN, Xiang'ao XIA. Review of Satellite Remote Sensing of Atmospheric Aerosols and Its Applications in Climate and Environment Studies[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 621-633. doi: 10.3878/j.issn.1006-9895.1801.17272

大气气溶胶的卫星遥感及其在气候和环境研究中的应用

doi: 10.3878/j.issn.1006-9895.1801.17272
基金项目: 

国家自然科学基金项目 41475027

国家自然科学基金项目 41775033

国家重点研发计划项目 2017YFA0603504

详细信息
    作者简介:

    陈洪滨, 男, 1960年出生, 研究员, 主要从事大气物理学与大气环境研究。E-mail:chb@mail.iap.ac.cn

    通讯作者:

    范学花, E-mail:fxh@mail.iap.ac.cn

  • 中图分类号: P41

Review of Satellite Remote Sensing of Atmospheric Aerosols and Its Applications in Climate and Environment Studies

Funds: 

National Natural Science Foundation of China 41475027

National Natural Science Foundation of China 41775033

National Key R & D Program of China 2017YFA0603504

  • 摘要: 卫星遥感可以获得全球范围的大气气溶胶光学特性,目前国内外已有多颗卫星观测能够提供气溶胶特性的资料。本文综述性介绍国内外卫星遥感气溶胶特性方面的研究进展和成果,并讨论了卫星遥感资料在气候和环境研究领域中的应用。主要内容包括:极轨/静止卫星平台搭载的被动遥感传感器及其反演气溶胶特性的方法;星载激光雷达获取气溶胶光学特性的方法;国内外正在研发的新一代卫星主、被动气溶胶遥感探测器;卫星气溶胶产品在气溶胶辐射强迫、气候效应、大尺度污染输送、区域空气质量监测等研究中的应用。
  • 图  1  卫星被动遥感反演气溶胶特性流程图

    Figure  1.  Flow chart of retrieval of aerosol properties from satellite passive sensors

    图  2  POLDER多角度观测示意图

    Figure  2.  The schematic diagram of POLDER (POLarization and Directionality of the Earth's Reflectances) multi-angular observation

    表  1  可获得气溶胶光学特性的极轨卫星平台被动遥感传感器信息

    Table  1.   Information on passive sensors for aerosol retrieval onboard polar-orbit satellites

    传感器/卫星平台传感器研制国家可获取的资料时长光谱通道设置观测方式和特点气溶胶产品及空间分辨率
    AVHRR (The advanced very high resolution radiometer)- 1/ TIROS (Television Infrared Observation Satellite)-N, NOAA-6, 8, 10, 12 美国 1978年11月至1994年12月 0.58~11.5 µm,共4个通道; 多通道跨轨扫描 洋面上空的气溶胶光学厚度AOD(Aerosol Optical Depth);二级产品:0.1°;三级产品:0.1°
    AVHRR-2/NOAA-7, 9, 11, 13, 14 1981年8月至2007年9月 0.58~12.5 µm,共5个通道;
    AVHRR-3/MetOp (Meteorological Operational)-A, B, C, NOAA-15, 16, 17, 18, 19 1998年5月至今 0.58~12.5 µm,共6个通道
    MODIS (Moderate Resolution Imaging Spectroradiometer)/Terra 美国 1999年12月至今 0.4~14.4 µm,共36个通道; 多通道跨轨推扫 AOD、气溶胶尺度分布(洋面),气溶胶类型(陆面);二级产品:10 km,3 km;三级产品:1.0°
    MODIS/Aqua 2002年5月至今
    MERSI (Medium Resolution Spectral Imager)/FY3A, 3B, 3C 中国 2008年5月至今 0.4~13.8 µm,共20个通道 多通道跨轨推扫 AOD;二级产品:1 km;三级产品:5 km
    VIIRS (Visible Infrared Imaging Radiometer Suite)/NPP (National Polar-orbiting Partnership) 美国 2011年10月至今 0.4~12.5 µm,共16个通道 多通道跨轨推扫 AOD、气溶胶尺度分布;中间产品IP(Intermediate Product):750 m;环境记录产品EDR(Environmental Data Record):6 km
    MISR (The Multi-angle Imaging SpectroRadiometer)/Terra 美国 2000年2月至今 0.44~0. 87 µm,共4个通道 多角度(9个角度:0°、±26.1°、±45.6°、±60.0°、±70.5°)观测 AOD、埃斯屈朗指数AE (Angstrom Exponent)、气溶胶类型;二级产品:17.6 km;三级产品:0.5°
    POLDER-1 (Polarization and Directionality of the Earth’s Reflectances)/ADEOS-1(Advanced Earth Observing Satellite), POLDER-2/ADEOS-2 法国 1996年8月至1997年6月;2002年12月至2003年10月 0.44~0.91 µm,共8个通道,其中0.44、0.67、0.87 nm具有偏振探测能力 多角度(最多14个观测角度)多通道偏振探测 AOD、AE;二级产品:20 km;三级产品:20 km
    POLDER-3 /PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) 法国 2005年3月至2013年10月 0.44~1.02 µm,共9个通道,其中0.49, 0.67, 0.87具有偏振探测能力 多角度(最多16个观测角度)多通道偏振探测 AOD、AE;二级产品:18.5 km;三级产品:18.5 km
    SeaWiFS (Sea-Viewing Wide Field-of-View Sensor)/SeaStar 美国 1997年9月至2010年12月 0.41~0.87 µm,共8个通道 以海色遥感为主要目的,更精确的大气校正方案 AOD、AE(洋面)、细模态比FMF(Fine Mode Fraction)(洋面);二级产品:13.5km;三级产品:0.5°,1.0°
    MERIS (MEdium Resolution Imaging Spectrometer)/Envisat 欧空局 2002年3月至2012年5月 0.41~0.90 µm,共15个通道 以海色遥感为主要目的,更精确的大气校正方案 AOD、AE;二级产品:1.2 km三级产品:9 km
    TOMS (Total Ozone Mapping Spectrometer)/Nimbus-7; TOMS/Meteor-3 美国 1978年11月至1993年4月;1991年8月至1994年11月 0.31~0.38 µm,共6个通道 紫外波段,下垫面(包括洋面、陆地,及可见和近红外波段呈现亮地表特征的干旱半干旱地表)反射率很低,有助于提取吸收气溶胶特性。 气溶胶指数AI(Aerosol Index)、AOD、气溶胶吸收光学厚度AAOD(Aerosol Absorption Optical Depth);二级产品:50 km;三级产品:1.0°
    TOMS/ADEOS-1;TOMS/EP (Earth Probe) 美国 1996年8月至1997年6月;1996年7月至2005年12月 0.31~0.36 µm,共6个通道 同上 AI、AOD、AAOD;二级产品:40 km;三级产品:1.0°
    OMI (Ozone Monitoring Instrument)/Aura 芬兰、荷兰合作 2004年10月至今 可见光波段:0.35~0.50 µm,光谱分辨率约0.63 nm;紫外波段:UV-1,0.27~0.31µm,UV-2, 0.31~0.38 µm,光谱分辨率约0.42 nm 同上 AOD、AAOD、单次散射反照率SSA(Single Scattering Albeo)、紫外气溶胶指数UVAI(Ultra Violet Aerosol Index);二级产品:13×24 km;三级产品:0.25°和1°
    下载: 导出CSV
  • [1] Ahmad Z, Franz B A, McClain C R, et al. 2010. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans[J]. Appl. Opt., 49 (29):5545-5560, doi:10.1364/AO.49. 005545.
    [2] Bauer S E, Menon S. 2012. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions[J]. J. Geophys. Res.-Atmos., 117, D13206, DOI: 10.1029/2011JD016816.
    [3] Bellouin N, Boucher O, Haywood J, et al. 2005. Global estimate of aerosol direct radiative forcing from satellite measurements[J]. Nature, 438 (7071):1138-1141, doi:doi: 10.1038/nature04348.
    [4] Benas N, Hatzianastassiou N, Matsoukas C, et al. 2011. Aerosol shortwave direct radiative effect and forcing based on MODIS Level 2 data in the eastern Mediterranean (Crete)[J]. Atmos. Chem. Phys., 11 (24):12647-12662, doi: 10.5194/acp-11-12647-2011.
    [5] Boucher O, Randall D, Artaxo P, et al. 2013. Clouds and Aerosols[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge, UK and New York, NY, USA: Cambridge University Press.
    [6] Chand D, Anderson T L, Wood R, et al. 2008. Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing[J]. J. Geophys. Res. Atmos., 113 (D13):D13206, doi: 10.1029/2007JD009433.
    [7] 陈勇航, 毛晓琴, 黄建平, 等. 2009.一次强沙尘输送过程中气溶胶垂直分布特征研究[J].中国环境科学, 29(5):449-454. doi: 10.3321/j.issn:1000-6923.2009.05.001.

    Chen Yonghang, Mao Xiaoqin, Huang Jianping, et al. 2009. Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution [J]. China Environmental Science (in Chinese), 29 (5): 449–454, doi: 10.3321/j.issn:1000-6923.2009.05.001.
    [8] Chen L, Shi G Y, Wang B A, et al. 2011. Assessment Aerosol Direct Radiative Forcing over China Land Areas Based On Satellite Data[C]//Proc. SPIE, Remote Sensing of the Environment: The 17th China Conference on Remote Sensing. Hangzhou, China, 8203, doi: 10.1117/12.910427.
    [9] Cheng T H, Gu X F, Xie D H, et al. 2011. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements[J]. Remote Sensing of Environment, 115 (7), 1643-1652. https://www.deepdyve.com/lp/elsevier/simultaneous-retrieval-of-aerosol-optical-properties-over-the-pearl-6k01NwH8r1
    [10] Chin M, Diehl T, Tan Q, et al. 2014. Multi-decadal aerosol variations from 1980 to 2009:A perspective from observations and a global model[J]. Atmos. Chem. Phys., 14 (7):3657-3690, doi: 10.5194/acp-14-3657-2014.
    [11] Chou M D, Chan P K, Wang M H. 2002. Aerosol radiative forcing derived from SeaWiFS-Retrieved aerosol optical properties[J]. J. Atmos. Sci., 59 (3):748-757, doi:10.1175/1520-0469(2002)059<0748:ARFDFS>2.0.CO;2.
    [12] Christopher S A, Zhang J L. 2002. Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans[J]. Geophys. Res. Lett., 29 (18):1859, doi: 10.1029/2002GL014803.
    [13] Christopher S A, Wang J. 2004. Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China:Implications for satellite aerosol retrievals and radiative forcing calculations[J]. Tellus B Chem. Phys. Meteor., 56(5):451-456, doi: 10.3402/tellusb.v56i5.16462.
    [14] Chudnovsky A A, Lee H J, Kostinski A, et al. 2012. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES)[J]. J. Air Waste Manag. Assoc., 62 (9):1022-1031, doi:10.1080/10962247. 2012.695321.
    [15] Coakley J A Jr, Cess R D, Yurevich F B. 1983. The effect of tropospheric aerosols on the earth's radiation budget:A parameterization for climate models[J]. J. Atmos. Sci., 40 (1):116-138. doi: 10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2
    [16] Costa M J, Silva A M and Levizzani V. 2003. Aerosol radiative forcing assessment from polar and geostationary satellite measurements. Remote Sensing of Clouds and the Atmosphere Vii, 4882:80-89. doi: 10.1117/12.462590
    [17] Costantino L, Bréon F M. 2010. Analysis of aerosol-cloud interaction from multi-sensor satellite observations[J]. Geophys. Res. Lett., 37 (11):L11801, doi: 10.1029/2009GL041828.
    [18] De Graaf M, Stammes P. 2005. SCIAMACHY absorbing aerosol index-calibration issues and global results from 2002-2004[J]. Atmos. Chem. Phys., 5(9):2385-2394, doi: 10.5194/acp-5-2385-2005.
    [19] De Graaf M, Stammes P, Aben E A A. 2007. Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY[J]. J. Geophys. Res. Atmos., 112 (D2):D02206, doi: 10.1029/2006jd007249.
    [20] Deuzé J L, Bréon F M, Devaux C, et al. 2001. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. J. Geophys. Res. Atmos., 106 (D5):4913-4926, doi: 10.1029/2000JD900364.
    [21] Dubovik O, Lapyonok T, Litvinov P, et al. 2014. GRASP: A versatile algorithm for characterizing the atmosphere[OL]. SPIE Newsroom, https://www.researchgate.net/publication/266081435_GRASP_a_versatile_algorithm_for_characterizing_the_atmosphere?enrichId=rgreq-7fe1bc15a9d3a724c0da9b2f78060d60-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4MTQzNTtBUzoxNDU1NDExNTc2MjU4NTZAMTQxMTcxMTEyNDk3OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf, doi: 10.1117/2.1201408.005558.
    [22] Fan X H, Chen H B, Lin L F, et al. 2009. Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements[J]. Adv. Atmos. Sci., 26(6):1099-1107, doi: 10.1007/s00376-009-8103-x.
    [23] Fu Y F, Zhu J C, Yang Y J, et al. 2017. Grid-cell aerosol direct shortwave radiative forcing calculated using the SBDART model with MODIS and AERONET observations:An application in winter and summer in eastern China[J]. Adv. Atmos. Sci., 34 (8):952-964, doi: 10.1007/s00376-017-6226-z.
    [24] 高庆先, 任阵海, 张运刚, 等. 2004. 利用静止卫星资料跟踪沙尘天气的发生、发展及其传输[J]. 资源科学, 26 (5):24-29. doi: 10.3321/j.issn:1007-7588.2004.05.004

    Gao Qingxian, Ren Zhenhai, Zhang Yungang, et al. 2004. Dust event and its formation, development and transportation based on satellite data[J]. Resour. Sci. (in Chinese), 26 (5):24-29, doi: 10.3321/j.issn:1007-7588.2004.05.004.
    [25] Gassó S, Torres O. 2016. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean[J]. Atmos. Meas. Tech., 9 (7):3031-3052, doi: 10.5194/amt-9-3031-2016.
    [26] Green M, Kondragunta S, Ciren P, et al. 2009. Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois[J]. J. Air Waste Manag. Assoc., 59 (9):1082-1091, doi:10.3155/1047-3289. 59.9.1082.
    [27] Gu X, Cheng T, Xie D, et al. 2011. Analysis of surface and aerosol polarized reflectance for aerosol retrievals from polarized remote sensing in PRD urban region[J]. Atmospheric Environment, 45(36), 6607-6612, doi: 10.1016/j.atmosenv.2011.06.047.
    [28] Guleria R P, Kuniyal J C, Rawat P S, et al. 2011. The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing[J]. Meteor. Atmos. Phys., 113(3-4):153-169, doi: 10.1007/s00703-011-0149-5.
    [29] Hansen J, Sato M, Ruedy R. 1997. Radiative forcing and climate response[J]. J. Geophys. Res. Atmos., 102 (D6):6831-6864, doi: 10.1029/96JD03436.
    [30] 何秀, 邓兆泽, 李成才, 等. 2010. MODIS气溶胶光学厚度产品在地面PM10监测方面的应用研究[J]. 北京大学学报 (自然科学版), 46 (2):178-184. doi: 10.13209/j.0479-8023.2010.026

    He Xiu, Deng Zhaoze, Li Chengcai, et al. 2010. Application of MODIS AOD in surface PM10 evaluation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 46 (2):178-184, doi: 10.13209/j.0479-8023.2010.026.
    [31] Herman J R, Bhartia P K, Torres O, et al. 1997. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data[J]. J. Geophys. Res. Atmos., 102 (D14):16911-16922, doi: 10.1029/96JD03680.
    [32] Hsu N C, Tsay S C, King M D, et al. 2004. Aerosol properties over bright-reflecting source regions[J]. IEEE Trans. Geosci. Remote Sens., 42 (3):557-569, doi: 10.1109/TGRS.2004.824067.
    [33] Hsu N C, Tsay S C, King M D, et al. 2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia[J]. IEEE Trans. Geosci. Remote Sens., 44 (11):3180-3195, doi: 10.1109/TGRS.2006.879540.
    [34] 胡秀清, 卢乃锰, 张鹏. 2007. 利用静止气象卫星红外通道遥感监测中国沙尘暴[J]. 应用气象学报, 18 (3):266-275. doi: 10.3969/j.issn.1001-7313.2007.03.002

    Hu Xiuqing, Lu Naimeng, Zhang Peng. 2007. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite[J]. J. Appl. Meteor. Sci. (in Chinese), 18 (3):266-275, doi:10.3969/j.issn. 1001-7313.2007.03.002.
    [35] 胡秀清, 卢乃锰, 邱红, 等. 2003. 利用静止气象卫星监测沙尘暴[J]. 气候与环境研究, 8 (1):101-106. doi: 10.3969/j.issn.1006-9585.2003.01.012

    Hu Xiuqing, Lu Naimeng, Qiu Hong, et al. 2003. Dust-storm monitoring using geostationary meteorological satellites[J]. Clim. Environ. Res. (in Chinese), 8 (1):101-106, doi:10. 3969/j.issn.1006-9585.2003.01.012.
    [36] Hu Y X, Vaughan M, Liu Z Y, et al. 2007. Retrieving optical depths and lidar ratios for transparent layers above opaque water clouds from CALIPSO lidar measurements[J]. IEEE Geosci. Remote Sens. Lett., 4(4):523-526, doi: 10.1109/LGRS.2007.901085.
    [37] Huang J P, Minnis P, Lin B, et al. 2006. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES[J]. Geophys. Res. Lett., 33 (6):L06824, doi: 10.1029/2005gl024724.
    [38] Huang J, Liu J, Chen B, et al. 2015:Detection of anthropogenic dust using CALIPSO lidar measurements[J]. Atmospheric Chemistry and Physics, 15, 11653-11665, doi: 10.5194/acp-15-11653-2015.
    [39] Ichoku C, Remer L A, Kaufman Y J, et al. 2003. MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000[J]. J. Geophys. Res. Atmos., 108 (D13):8499, doi: 10.1029/2002JD002366.
    [40] Jiang J H, Su H, Schoeberl M R, et al. 2008. Clean and polluted clouds:Relationships among pollution, ice clouds, and precipitation in South America[J]. Geophys. Res. Lett., 35 (14):L14804, doi: 10.1029/2008GL034631.
    [41] Justice C O, Vermote E, Townshend J R G, et al. 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS):Land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing 36 (4):1228-1249. doi: 10.1109/36.701075
    [42] Kahn R A, Gaitley B J, Martonchik J V, et al. 2005. MISR global aerosol optical depth validation based on two years of coincident AERONET observations[J]. J. Geophys. Res. Atmos., 110 (D10):D10S04, doi: 10.1029/2004JD004706.
    [43] Kahn R, Petzold A, Wendisch M, et al. 2009. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging[J]. Tellus B Chem. Phys. Meteor., 61 (1):239-251, doi: 10.1111/j.1600-0889.2008.00398.x.
    [44] Kaufman Y J, Nakajima T. 1993. Effect of Amazon smoke on cloud microphysics and albedo-Analysis from satellite imagery[J]. J. Appl. Meteor., 32 (4):729-744. doi: 10.1175/1520-0450(1993)032<0729:EOASOC>2.0.CO;2
    [45] Kaufman Y J, Wald A E, Remer L A, et al. 1997. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Trans. Geosci. Remote Sens., 35 (5):1286-1298, doi: 10.1109/36.628795.
    [46] Kim M, Kim J, Jeong U, et al. 2016. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)[J]. Atmos. Chem. Phys., 16 (3):1789-1808, doi: 10.5194/acp-16-1789-2016.
    [47] Knapp K R, Frouin R, Kondragunta S, et al. 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances:Determining surface reflectance[J]. Int. J. Remote Sens., 26 (18):4097-4116, doi: 10.1080/01431160500099329.
    [48] Knobelspiesse K, Cairns B, Redemann J, et al. 2011. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign[J]. Atmos. Chem. Phys., 11 (13):6245-6263, doi: 10.5194/acp-11-6245-2011.
    [49] Kokhanovsky A A, Prikhach A S, Katsev I L, et al. 2009. Determination of particulate matter vertical columns using satellite observations[J]. Atmos. Meas. Tech., 2 (2):327-335, doi: 10.5194/amt-2-327-2009.
    [50] Levy R C, Remer L A, Martins J V, et al. 2005. Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS[J]. J. Atmos. Sci., 62 (4):974-992, doi: 10.1175/JAS3391.1.
    [51] Levy R C, Remer L A, Mattoo S, et al. 2007. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. J. Geophys. Res., 112, D13211, doi: 10.1029/2006JD007811.
    [52] 李成才, 毛节泰, 刘启汉. 2003. 利用MODIS遥感大气气溶胶及气溶胶产品的应用[J]. 北京大学学报 (自然科学版), 39 (S):108-117. doi: 10.3321/j.issn:0479-8023.2003.z1.014

    Li Chengcai, Mao Jietai, Liu Qihan. 2003. Remote sensing aerosol with MODIS and the application of MODIS aerosol products[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 39 (S):108-117, doi: 10.3321/j.issn:0479-8023.2003.z1.014.
    [53] 李成才, 刘启汉, 毛节泰, 等. 2004. 利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染[J]. 应用气象学报, 15 (6):641-650. doi: 10.3969/j.issn.1001-7313.2004.06.001

    Li Chengcai, Liu Qihan, Mao Jietai, et al. 2004. An aerosol pollution episode in Hong Kong with remote sensing products of MODIS and lidar[J]. J. Appl. Meteor. Sci. (in Chinese), 15 (6):641-650, doi: 10.3969/j.issn.1001-7313.2004.06.001.
    [54] Li C C, Lau A K H, Mao J T, et al. 2005a. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong[J]. IEEE Trans. Geosci. Remote Sens., 43 (11):2650-2658, doi: 10.1109/TGRS.2005.856627.
    [55] Li C C, Mao J T, Lau A K H, et al. 2005b. Application of MODIS satellite products to the air pollution research in Beijing[J]. Sci. China Ser. D Earth Sci., 48 (SII):209-219. https://www.researchgate.net/profile/Chengcai_LI/publication/234116608_Application_of_MODIS_satellite_products_to_the_air_pollution_research_in_Beijing/links/552fa6520cf2acd38cbc279c.pdf
    [56] Liu J, Xia X, Wang P, et al. 2007. Significant aerosol direct radiative effects during a pollution episode in northern China[J]. Geophys. Res. Lett., 34 (23):L23808, doi: 10.1029/2007GL030953.
    [57] Liu X G, Li J, Qu Y, et al. 2013. Formation and evolution mechanism of regional haze:A case study in the megacity Beijing, China[J]. Atmos. Chem. Phys., 13 (9):4501-4514, doi: 10.5194/acp-13-4501-2013.
    [58] 马月,薛惠文. 2012. 利用CloudSat和MODIS数据研究气溶胶对层积云的影响[J]. 北京大学学报(自然科学版),48(2):239-245. http://www.cqvip.com/QK/94075X/201202/41263896.html

    Ma Yue, Xue Huiwen. 2012. A Study of Aerosol Effects on Stratocumulus Clouds Using CloudSat and MODIS Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(2):239-245. http://www.cqvip.com/QK/94075X/201202/41263896.html
    [59] Määttä A, Laine M, Tamminen J, et al. 2014. Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements[J]. Atmos. Meas. Tech., 7 (5):1185-1199, doi: 10.5194/amt-7-1185-2014.
    [60] McClain C R, Bontempi P, Maring H. 2011. The NASA decadal survey aerosol, cloud, ecosystems mission[C]//Earth Resources and Remote Sensing. Greenbelt, MD, United States: NASA Goddard Space Flight Center. http://ntrs.nasa.gov/search.jsp?R=20110015335
    [61] Ou S C, Liou K N, Hsu N C, et al. 2012. Satellite remote sensing of dust aerosol indirect effects on cloud formation over eastern Asia[J]. Int. J. Remote Sens., 33 (22):7257-7272, doi: 10.1080/01431161.2012.700135.
    [62] Paciorek C J, Liu Y, Moreno-Macias H, et al. 2008. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5[J]. Environ. Sci. Technol., 42 (15):5800-5806, doi: 10.1021/es703181j.
    [63] Pereira do Carmo J, Hélière A, Le Hors L, et al. 2016. ATLID, ESA Atmospheric LIDAR development status[C]//The 27th International Laser Radar Conference. New York City, USA, 119, doi: 10.1051/epjconf/201611904003.
    [64] 伽丽丽, 马, 陈兴峰, 等. 2016. 卫星近红外偏振通道反演气溶胶光学厚度的气溶胶模型影响[J]. 红外与毫米波学报, 35 (5):569-577. doi: 10.11972/j.issn.1001-9014.2016.05.011

    Qie Lili, Ma Yan, Chen Xingfeng, et al. 2016. Aerosol model assumption:The retrievals of aerosol optical depth from satellite near-infrared polarimetric measurements[J]. J. Infrared Millim. Waves, 35 (5):569-577, doi: 10.11972/j.issn.1001-9014.2016.05.011.
    [65] Quaas J, Boucher O. 2005. Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data[J]. Geophys. Res. Lett., 32 (17):L17814, doi: 10.1029/2005gl023850.
    [66] Quaas J, Ming Y, Menon S, et al. 2009. Aerosol indirect effects-general circulation model intercomparison and evaluation with satellite data[J]. Atmos. Chem. Phys., 9 (22):8697-8717, doi: 10.5194/acp-9-8697-2009.
    [67] Remer L A, Kaufman Y J, Levin Z, et al. 2002. Model assessment of the ability of MODIS to measure top-of-atmosphere direct radiative forcing from smoke aerosols[J]. J. Atmos. Sci., 59 (3):657-667, doi:10.1175/1520-0469(2002)059<0657:MAOTAO>2.0.CO;2.
    [68] Ren X Y, Xie Y, Ren G Y. 2017. Spatiotemporal characteristics of TOMS-based dust aerosol optical depth in northern China during 1978-2005[J]. Earth Sci. Inform., 10 (1):41-53, doi: 10.1007/s12145-016-0277-z.
    [69] Rodgers C D. 2000. Inverse Methods For Atmospheric Sounding:Theory and Practice[M]. World Scientific Publishing Co. Ltd., 238pp.
    [70] Rogers R R, Vaughan M A, Hostetler C A, et al. 2014. Looking through the haze:Evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data[J]. Atmos. Meas. Tech., 7 (12):4317-4340, doi: 10.5194/amt-7-4317-2014.
    [71] Rohen G J, Von Hoyningen-Huene W, Kokhanovsky A, et al. 2011. Retrieval of aerosol mass load (PM10) from MERIS/Envisat top of atmosphere spectral reflectance measurements over Germany[J]. Atmos. Meas. Tech., 4 (3):523-534, doi: 10.5194/amt-4-523-2011.
    [72] Rosenfeld D, Andreae M O, Asmi A, et al. 2014. Global observations of aerosol-cloud-precipitation-climate interactions[J]. Reviews of Geophysics 52 (4):750-808. doi: 10.1002/2013RG000441
    [73] Schaaf C B, Gao F, Strahler A H, et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment 83 (1-2):135-148. doi: 10.1016/S0034-4257(02)00091-3
    [74] Schroeder T, Behnert I, Schaale M, et al. 2007. Atmospheric correction algorithm for MERIS above case-2 waters[J]. International Journal of Remote Sensing 28 (7):1469-1486. doi: 10.1080/01431160600962574
    [75] Sekiyama T T, Yumimoto K, Tanaka T, et al. 2016. Data assimilation of Himawari-8 aerosol observations:Asian dust forecast in June 2015[J]. Sola, 12:86-90, doi: 10.2151/sola.2016-020.
    [76] Shang H Z, Chen L F, Letu H, et al. 2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China[J]. J. Geophys. Res. Atmos., 122 (6):3528-3543, doi: 10.1002/2016JD025659.
    [77] 申莉莉, 盛立芳, 陈静静. 2010. 一次强沙尘暴过程中沙尘气溶胶空间分布的初步分析[J]. 中国沙漠, 30 (6):1483-1490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201006035

    Shen Lili, Sheng Lifang, Chen Jingjing. 2010. Preliminary analysis of the spatial distribution of the dust aerosol in a heavy dust storm[J]. J. Des. Res. (in Chinese), 30 (6):1483-1490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201006035
    [78] Shi G M, Li C C, Ren T, et al. 2015. Retrieval of atmospheric aerosol and surface properties over land using satellite observations[J]. IEEE Trans. Geosci. Remote Sens., 53 (2):1039-1047, doi:10.1109/TGRS.2014. 2332551.
    [79] Su W Y, Loeb N G, Xu K M, et al. 2010. An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis[J]. J. Geophys. Res. Atmos., 115 (D18):D18219, doi: 10.1029/2010jd013948.
    [80] Su W Y, Loeb N G, Schuster G L, et al. 2013. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations[J]. J. Geophys. Res. Atmos., 118 (2):655-669. doi: 10.1029/2012JD018294
    [81] 苏小莉. 2010. POLDER偏振信息遥感东亚地区气溶胶特性的研究[D]. 中国科学院大学博士学位论文.

    Su Xiaoli. 2010. Analyses of aerosol characteristics over East Asia using POLDER observations[D]. Ph. D. dissertation (in Chinese). University of Chinese Academy of Sciences.
    [82] Tang J P, Wang P C, Mickley L J, et al. 2014. Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over eastern China from satellite data[J]. Atmos. Environ., 84:244-253, doi: 10.1016/j.atmosenv.2013.08.024.
    [83] Tanré D, Kaufman Y J, Herman M, et al. 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances[J]. J. Geophys. Res. Atmos., 102 (D14):16971-16988, doi: 10.1029/96JD03437.
    [84] Tao M H, Chen L F, Su L, et al. 2012. Satellite observation of regional haze pollution over the North China Plain[J]. J. Geophys. Res. Atmos., 117 (D12):D12203, doi: 10.1029/2012jd017915.
    [85] Tao M H, Chen L F, Wang Z F, et al. 2014. A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations[J]. Atmos. Environ., 82:183-192, doi: 10.1016/j.atmosenv.2013.10.010.
    [86] Torres O, Bhartia P K, Herman J R, et al. 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation:Theoretical basis[J]. J. Geophys. Res.-Atmos., 103 (D18):23321-23321. doi: 10.1029/98JD02709
    [87] Torres O, Tanskanen A, Veihelmann B, et al. 2007. Aerosols and surface UV products from ozone monitoring instrument observations:An overview[J]. J. Geophys. Res. Atmos., 112 (D24):D24S47, doi: 10.1029/2007JD008809.
    [88] Torres O, Jethva H, Bhartia P K. 2012. Retrieval of aerosol optical depth above clouds from OMI observations:Sensitivity analysis and case studies[J]. J. Atmos. Sci., 69 (3):1037-1053, doi: 10.1175/JAS-D-11-0130.1.
    [89] Twomey S. 1977. The influence of pollution on the shortwave albedo of clouds[J]. J. Atmos. Sci., 34 (7):1149-1152, doi:10.1175/1520-0469 (1977)034<1149:TIOPOT>2.0.CO;2.
    [90] Van Donkelaar A, Martin R V, Spurr R J D, et al. 2013. Optimal estimation for global ground-level fine particulate matter concentrations[J]. J. Geophys. Res. Atmos., 118 (11):5621-5636, doi: 10.1002/jgrd.50479.
    [91] Vaughan M A, Young S A, Winker D M, et al. 2004. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products[C]//Proc. SPIE Laser Radar Techniques for Atmospheric Sensing. Maspalomas, Canary Islands, Spain: SPIE, 5575: 16-30, doi: 10.1117/12.572024.
    [92] Wang J, Nair U S, Christopher S A. 2004. GOES 8 aerosol optical thickness assimilation in a mesoscale model:Online integration of aerosol radiative effects[J]. J. Geophys. Res. Atmos., 109 (D23):D23203, doi: 10.1029/2004jd004827.
    [93] 王中挺, 陈良富, 张莹, 等. 2008. 利用MODIS数据监测北京地区气溶胶[J]. 遥感技术与应用, 23 (3):284-288. doi: 10.11873/j.issn.1004-0323.2008.3.284

    Wang Zhongting, Chen Liangfu, Zhang Ying, et al. 2008. Urban surface aerosol monitoring using DDV method from MODIS data[J]. Remote Sens. Technol. Appl. (in Chinese), 23 (3):284-288. doi: 10.11873/j.issn.1004-0323.2008.3.284
    [94] Wang P, Tuinder O N E, Tilstra L G, et al. 2012. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events[J]. Atmos. Chem. Phys., 12 (19):9057-9077, doi: 10.5194/acp-12-9057-2012.
    [95] Wang F, Guo J P, Zhang J H, et al. 2015. Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China[J]. Atmos. Environ., 113:1-9, doi: 10.1016/j.atmosenv.2015.04.063.
    [96] Wang J, Aegerter C, Xu X G, et al. 2016. Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space[J]. Atmos. Environ., 124:55-63, doi:10.1016/j.atmosenv.2015.11. 013.
    [97] Waquet F, Cairns B, Knobelspiesse K, et al. 2009. Polarimetric remote sensing of aerosols over land[J]. J. Geophys. Res. Atmos., 114 (D1):D01206, doi: 10.1029/2008JD010619.
    [98] Waquet F, Cornet C, Deuzé J L, et al. 2013a. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements[J]. Atmos. Meas. Tech., 6 (4):991-1016, doi: 10.5194/amt-6-991-2013.
    [99] Waquet F, Peers F, Ducos F, et al. 2013b. Global analysis of aerosol properties above clouds[J]. Geophys. Res. Lett., 40 (21):5809-5814, doi: 10.1002/2013GL057482.
    [100] Winker D M, Hunt W H, McGill M J. 2007. Initial performance assessment of CALIOP[J]. Geophys. Res. Lett., 34 (19):L19803, doi: 10.1029/2007GL030135.
    [101] Wu J S, Yao F, Li W F, et al. 2016. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei:A spatiotemporal statistical model[J]. Remote Sens. Environ., 184:316-328, doi: 10.1016/j.rse.2016.07.015.
    [102] 夏祥鳌. 2006. 全球陆地上空MODIS气溶胶光学厚度显著偏高[J]. 科学通报, 51 (19):2297-2303. doi: 10.1007/s11434-006-2157-2

    Xia Xiang'ao. 2006. Significant overestimation of global aerosol optical thickness by MODIS over land[J]. Chinese Sci. Bull., 51 (23):2905-2912, doi: 10.1007/s11434-006-2157-2.
    [103] Xia X A, Zong X M. 2009. Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols[J]. Geophys. Res. Lett., 36 (7):L07803, doi: 10.1029/2009gl037237.
    [104] 徐成鹏, 葛觐铭, 黄建平, 等. 2014. 基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J]. 中国沙漠, 34 (5):1353-1362. doi: 10.7522/j.issn.1000-694X.2013.00395

    Xu Chengpeng, Ge Jinming, Huang Jianping, et al. 2014. Observations of dust aerosol over China based on CALIPSO spaceborne lidar[J]. J. Des. Res., 34 (5):1353-1362, doi: 10.7522/j.issn.1000-694X.2013.00395.
    [105] Xu J W, Martin R V, Van Donkelaar A, et al. 2015. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument. Atmos. Chem. Phys., 15 (22):13133-13144, doi: 10.5194/acp-15-13133-2015.
    [106] Xu H, Guo J P, Ceamanos X, et al. 2016. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data[J]. Atmos. Environ., 141:186-196, doi: 10.1016/j.atmosenv.2016.06.067.
    [107] 徐婷婷, 秦艳, 耿福海, 等. 2012. 环上海地区干霾气溶胶垂直分布的季节变化特征[J]. 环境科学, 33 (7):2165-2171. doi: 10.13227/j.hjkx.2012.07.017

    Xu Tingting, Qin Yan, Geng Fuhai, et al. 2012. Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai[J]. Environ. Sci. (in Chinese), 33 (7):2165-2171, doi: 10.13227/j.hjkx.2012.07.017.
    [108] Yang W D, Marshak A, Várnai T, et al. 2012. Effect of CALIPSO cloud-aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds[J]. Atmos. Res., 116:134-141, doi: 10.1016/j.atmosres.2012.03.013.
    [109] Yang J, Zhang Z Q, Wei C Y, et al. 2017. Introducing the new generation of Chinese geostationary weather satellites, FengYun-4 (FY-4)[J]. Bull. Amer. Meteor. Soc., 98 (8):1637-1658, doi: 10.1175/BAMS-D-16-0065.1.
    [110] You W, Zang Z L, Zhang L F, et al. 2016. A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval[J]. Atmos. Res., 168:169-179. doi: 10.1016/j.atmosres.2015.09.008
    [111] Zhang J L, Christopher S A. 2003. Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra[J]. Geophys. Res. Lett., 30 (23):2188, doi: 10.1029/2003gl018479.
    [112] Zhang H, Lyapustin A, Wang Y, et al. 2011. A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States[J]. Atmos. Chem. Phys., 11 (23):11977-11991, doi: 10.5194/acp-11-11977-2011.
    [113] 郑卓云, 陈良富, 郑君瑜, 等. 2011.高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究[J].环境科学学报, 31 (6):1154-1161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201106004
    [114] Chen Yonghang, Mao Xiaoqin, Huang Jianping, et al. 2009. Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution[J]. China Environmental Science (in Chinese), 29 (5):449-454, doi: 10.3321/j.issn:1000-6923.2009.05.001.
    [115] Gao Qingxian, Ren Zhenhai, Zhang Yungang, et al. 2004. Dust event and its formation, development and transportation based on satellite data[J]. Resour. Sci. (in Chinese), 26 (5):24-29, doi: 10.3321/j.issn:1007-7588.2004.05.004.
    [116] He Xiu, Deng Zhaoze, Li Chengcai, et al. 2010. Application of MODIS AOD in surface PM10 evaluation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 46 (2):178-184, doi: 10.13209/j.0479-8023.2010.026.
    [117] Hu Xiuqing, Lu Naimeng, Zhang Peng. 2007. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite[J]. J. Appl. Meteor. Sci. (in Chinese), 18 (3):266-275, doi:10.3969/j.issn. 1001-7313.2007.03.002.
    [118] Hu Xiuqing, Lu Naimeng, Qiu Hong, et al. 2003. Dust-storm monitoring using geostationary meteorological satellites[J]. Clim. Environ. Res. (in Chinese), 8 (1):101-106, doi:10. 3969/j.issn.1006-9585.2003.01.012.
    [119] Li Chengcai, Mao Jietai, Liu Qihan. 2003. Remote sensing aerosol with MODIS and the application of MODIS aerosol products[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 39 (S):108-117, doi: 10.3321/j.issn:0479-8023.2003.z1.014.
    [120] Li Chengcai, Liu Qihan, Mao Jietai, et al. 2004. An aerosol pollution episode in Hong Kong with remote sensing products of MODIS and lidar[J]. J. Appl. Meteor. Sci. (in Chinese), 15 (6):641-650, doi: 10.3969/j.issn.1001-7313.2004.06.001.
    [121] Ma Yue, Xue Huiwen. 2012. A Study of Aerosol Effects on Stratocumulus Clouds Using CloudSat and MODIS Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(2):239-245. http://www.researchgate.net/publication/285526685_A_study_of_aerosol_effects_on_stratocumulus_clouds_using_CloudSat_and_MODIS_data
    [122] Qie Lili, Ma Yan, Chen Xingfeng, et al. 2016. Aerosol model assumption:The retrievals of aerosol optical depth from satellite near-infrared polarimetric measurements[J]. J. Infrared Millim. Waves, 35 (5):569-577, doi: 10.11972/j.issn.1001-9014.2016.05.011.
    [123] Shen Lili, Sheng Lifang, Chen Jingjing. 2010. Preliminary analysis of the spatial distribution of the dust aerosol in a heavy dust storm[J]. J. Des. Res. (in Chinese), 30 (6):1483-1490. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGSS201006037.htm
    [124] Su Xiaoli. 2010. Analyses of aerosol characteristics over East Asia using POLDER observations[D]. Ph. D. dissertation (in Chinese). University of Chinese Academy of Sciences.
    [125] Wang Zhongting, Chen Liangfu, Zhang Ying, et al. 2008. Urban surface aerosol monitoring using DDV method from MODIS data[J]. Remote Sens. Technol. Appl. (in Chinese), 23 (3):284-288. http://www.oalib.com/paper/1469506
    [126] Xia Xiang'ao. 2006. Significant overestimation of global aerosol optical thickness by MODIS over land[J]. Chinese Sci. Bull., 51 (23):2905-2912, doi: 10.1007/s11434-006-2157-2.
    [127] Xu Chengpeng, Ge Jinming, Huang Jianping, et al. 2014. Observations of dust aerosol over China based on CALIPSO spaceborne lidar[J]. J. Des. Res., 34 (5):1353-1362, doi: 10.7522/j.issn.1000-694X.2013.00395.
    [128] Xu Tingting, Qin Yan, Geng Fuhai, et al. 2012. Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai[J]. Environ. Sci. (in Chinese), 33 (7):2165-2171, doi: 10.13227/j.hjkx.2012.07.017.
    [129] 郑卓云, 陈良富, 郑君瑜, 等. 2011. 高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究[J]. 环境科学学报, 31 (6):1154-1161. doi: 10.13671/j.hjkxxb.2011.06.011

    Zheng Zhuoyun, Chen Liangfu, Zheng Junyu, et al. 2011. Application of retrieved high-resolution AOD in regional PM monitoring in the Pearl River Delta and Hong Kong region[J]. Acta Scientiae Circumstantiae (in Chinese), 31 (6):1154-1161, doi:10.13671/j.hjkxxb. 2011.06.011.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1778
  • HTML全文浏览量:  118
  • PDF下载量:  2480
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 网络出版日期:  2018-01-31
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回