高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季亚洲高空急流纬向非对称变异与北大西洋海温和欧亚陆面热力异常的可能联系

梅一清 陈海山 刘鹏 李笛

梅一清, 陈海山, 刘鹏, 李笛. 夏季亚洲高空急流纬向非对称变异与北大西洋海温和欧亚陆面热力异常的可能联系[J]. 大气科学, 2019, 43(2): 401-416. doi: 10.3878/j.issn.1006-9895.1804.18112
引用本文: 梅一清, 陈海山, 刘鹏, 李笛. 夏季亚洲高空急流纬向非对称变异与北大西洋海温和欧亚陆面热力异常的可能联系[J]. 大气科学, 2019, 43(2): 401-416. doi: 10.3878/j.issn.1006-9895.1804.18112
Yiqing MEI, Haishan CHEN, Peng LIU, Di LI. Zonally Asymmetric Variation of Summer Asian Upper-tropospheric Jet and Its Possible Association with North Atlantic SST Anomaly and Eurasian Land Surface Thermal Anomaly[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(2): 401-416. doi: 10.3878/j.issn.1006-9895.1804.18112
Citation: Yiqing MEI, Haishan CHEN, Peng LIU, Di LI. Zonally Asymmetric Variation of Summer Asian Upper-tropospheric Jet and Its Possible Association with North Atlantic SST Anomaly and Eurasian Land Surface Thermal Anomaly[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(2): 401-416. doi: 10.3878/j.issn.1006-9895.1804.18112

夏季亚洲高空急流纬向非对称变异与北大西洋海温和欧亚陆面热力异常的可能联系

doi: 10.3878/j.issn.1006-9895.1804.18112
基金项目: 

国家自然科学基金项目 41230422

国家自然科学基金项目 41625019

国家自然科学基金项目 41405068

详细信息
    作者简介:

    梅一清, 女, 1992年出生, 硕士研究生, 主要从事短期气候预测研究。E-mail:meiqing0519@126.com

    通讯作者:

    陈海山, E-mail:haishan@nuist.edu.cn

  • 中图分类号: P461

Zonally Asymmetric Variation of Summer Asian Upper-tropospheric Jet and Its Possible Association with North Atlantic SST Anomaly and Eurasian Land Surface Thermal Anomaly

Funds: 

National Natural Science Foundation of China 41230422

National Natural Science Foundation of China 41625019

National Natural Science Foundation of China 41405068

  • 摘要: 基于1979~2015年ERA-Interim再分析资料,分析了夏季亚洲高空急流纬向非对称变异特征及其可能的外强迫因子。研究发现夏季亚洲200 hPa纬向风异常EOF第二模态(方差贡献为16.4%)主要表现出了急流纬向非对称的空间异常形态,反映了西亚和东亚区域急流南北偏移的反位相变化。通过进一步的诊断分析,我们发现急流纬向非对称变异与北大西洋海表温度(简称海温)和欧亚陆面热力异常可能存在一定的联系。北大西洋三极型海温异常会激发出向下游传播的异常波列,夏季该波列在欧亚大陆上空的异常环流中心与急流纬向非对称相关的异常环流中心对应一致,其中东欧平原的异常反气旋和巴尔喀什湖附近的异常气旋对西亚急流变化存在影响,东亚地区急流的变化与贝加尔湖北部异常气旋和贝加尔湖南部的异常反气旋有关。对比欧亚土壤湿度关键区内垂直环流,陆面热力异常可能会改变局地环流进而影响急流变异,且这种影响存在区域差异。
  • 图  1  夏季200 hPa纬向风异常EOF分解的前两个模态的(a、b)空间分布和(c、d)时间系数

    Figure  1.  (a, b) Spatial patterns and (c, d) corresponding principle component (PC) of the first two EOF modes of 200-hPa zonal wind anomaly in summer during 1979–2015

    图  2  PC2回归的夏季(a)200 hPa、(b)500 hPa、(c)850 hPa位势高度异常场(单位:gpm,等值线间隔:5 gpm)。红(蓝)色阴影代表正(负)回归系数通过90%信度水平检验

    Figure  2.  Geopotential height anomalies (units: gpm; contour intervals: 5 gpm) at (a) 200 hPa, (b) 500 hPa, and (c) 850 hPa regressed onto the PC2 in summer. The areas shaded in red (blue) denote positive (negative) regression coefficients above the 90% confidence level

    图  3  PC2回归的夏季200 hPa风场异常(单位:m s−1)。橘色线是夏季平均的20 m s−1纬向风等值线,阴影为纬向风异常通过90%信度水平检验

    Figure  3.  200-hPa wind anomalies (units: m s−1) regressed onto PC2 in summer. The orange line is 20 m s−1 isoline of zonal wind averaged in summer. Shaded areas denote zonal wind anomalies above the 90% confidence level

    图  4  PC2回归的夏季200 hPa相对涡度异常(阴影,单位:10−5 s−1)和波活动通量(蓝色箭头,单位:m2 s−2),黑色打点区域表示相对涡度异常通过90%信度水平检验

    Figure  4.  200-hPa relative vorticity anomaly (shadings, units: 10−5 s−1) and wave activity fluxes (blue vectors, units: m2 s−2) regressed onto PC2 in summer. Black stippling regions denote relative vorticity anomalies above the 90% confidence level

    图  5  PC2与(a)3~5月、(b)4~6月、(c)5~7月、(d)6~8月的北大西洋海温距平相关系数的空间分布。黑色打点区域表示通过95%信度水平检验

    Figure  5.  Spatial distributions of correlation coefficients between PC2 and North Atlantic SST anomaly in (a) March–May, (b) April–June, (c) May–July, (d) June–August. Black stippling regions denote correlation coefficients above the 95% confidence level

    图  6  春季北大西洋海温三极子指数回归(a)3~5月、(b)4~6月、(c)5~7月、(d)6~8月的200 hPa位势高度场(单位:gpm,等值线间隔:5 gpm)。红色和蓝色阴影代表正、负回归系数通过90%信度水平检验

    Figure  6.  200-hPa geopotential height anomalies (units: gpm; contour intervals: 5 gpm) in (a) March–May, (b) April–June, (c) May–July, (d) June–August regressed onto NATI (North Atlantic SSTA tripole index) in spring. The areas shaded in red (blue) denote positive (negative) regression coefficients above the 90% confidence level

    图  7  春季北大西洋海温三极子指数回归的夏季200 hPa风场异常(单位:m s−1)。橘色线是夏季平均的20 m s−1纬向风等值线,阴影为纬向风异常通过90%信度水平检验

    Figure  7.  200-hPa wind anomalies (units: m s−1) regressed onto NATI in spring. The orange line is 20 m s−1 isoline of zonal wind averaged in summer. Shaded areas denote zonal wind anomalies above the 90% confidence level

    图  8  (a)3~5月、(b)4~6月、(c)5~7月、(d)6~8月的北大西洋海温异常第一模态的空间分布和(e)NATI(折线)、6~8月的PC2(柱)

    Figure  8.  Spatial patterns in (a) March–May, (b) April–June, (c) May–July, (d) June–August and corresponding (e) NATI (broken lines) of the first EOF mode of North Atlantic SSTA with the PC2 (bars) from June to August

    图  9  PC2和夏季欧亚大陆土壤湿度相关系数的空间分布。方框代表四个显著相关区域(Area1、Area2、Area3、Area4),黑色打点区域表示通过95%信度水平检验

    Figure  9.  Spatial distribution of correlation coefficients between PC2 and summer soil moisture over Eurasia. Four squares indicate four significant correlated areas (Area1, Area2, Area3, Area4), black stippling regions denote correlation coefficients above the 95% confidence level

    图  10  夏季(a)Soil1、(b)Soil2、(c)Soil3、(d)Soil4回归的200 hPa纬向风异常(单位:m s−1)。红(蓝)色阴影代表正、负回归系数通过90%信度水平检验

    Figure  10.  200-hPa zonal wind anomalies (units: m s−1) regressed onto (a) Soil1, (b) Soil2, (c) Soil3, and (d) Soil4 in the summer. The areas shaded in red (blue) denote positive (negative) regression coefficients above the 90% confidence level

    图  11  夏季PC2回归的位势高度场(等值线,单位:gpm)、温度场(阴影,单位:℃)、经向环流(箭头,单位:m s−1)的剖面:(a)东欧平原;(b)贝加尔湖北部;(c)巴尔喀什湖附近;(d)贝加尔湖南部

    Figure  11.  Latitude–height cross sections of geopotential height (contours, units: gpm), temperature (shadings, units: ℃), and meridional circulation (vectors, units: m s−1) regressed onto PC2 in JJA: (a) East European plain; (b) North of Lake Baikal; (c) near Lake Balkash; (d) South of Lake Baikal

    图  12  夏季Soil1、Soil2、Soil3、Soil4回归的各关键区的位势高度场(等值线,单位:gpm)、温度场(阴影,单位:℃)、经向环流(箭头,单位:m s−1)的剖面:(a)东欧平原;(b)贝加尔湖北部;(c)巴尔喀什湖附近;(d)贝加尔湖南部

    Figure  12.  Latitude–height cross sections of geopotential height (contours, units: gpm), temperature (shadings, units: ℃), and meridional circulation (vectors, units: m s−1) regressed onto Soil1, Soil2, Soil3, Soil4 in respective key areas in summer: (a) East European plain; (b) North of Lake Baikal; (c) near Lake Balkash; (d) South of Lake Baikal

    图  13  PC2回归得到的夏季(a)土壤湿度(单位:m3 m−3)、(b)感热通量(单位:W m−2)、(c)地表温度(单位:℃)和(d)降水量(单位:mm)。红(蓝)色阴影代表正、负回归系数通过95%信度水平检验

    Figure  13.  (a) Soil moisture (units: m3 m−3), (b) sensible heat fluxes (units: W m−2), (c) skin temperature (units: ℃), (d) precipitation (units: mm) regressed on PC2. The areas shaded in red (blue) denote positive (negative) regression coefficients above the 95% confidence level

    表  1  西亚、东亚急流经向变化与PC2、土壤湿度指数(Soil1、Soil2、Soil3、Soil4)和NATI的相关系数

    Table  1.   The correlation coefficient between JetW (meridional change of western Asian Jet), JetE (meridional change of eastern Asian Jet) and PC2, Soil1 [soil moisture index near East European Plain (54°–64°N, 50°–60°E)], Soil2 [soil moisture index near the north of the Lake Baikal (57°–67°N, 95°–105°E)], Soil3 [soil moisture index near Balkhash Lake (38°–48°N, 68°–78°E)], Soil4 [soil moisture index near the south of the Lake Baikal (40°–50°N, 92°–102°E)], NATI

    与JetW、JetE的相关系数
    PC2 Soil1 Soil2 Soil3 Soil4 NATI
    西亚急流经向变化(JetW) −0.82*** 0.56*** −0.58*** −0.64*** 0.39** −0.29*
    东亚急流经向变化(JetE) 0.56*** −0.32** 0.14 0.25 −0.32** −0.18
    注:***代表通过99%信度检验,**代表通过95%信度检验,*代表通过90%信度检验。
    下载: 导出CSV
  • [1] Chen H S, Teng F D, Zhang W X, et al. 2017. Impacts of anomalous midlatitude cyclone activity over East Asia during summer on the decadal mode of East Asian summer monsoon and its possible mechanism[J]. J. Climate, 30 (2):739-753, doi: 10.1175/JCLI-D-16-0155.1.
    [2] Chen S F, Wu R G. 2017a. Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature[J]. J. Climate, 30 (10):3771-3787, doi: 10.1175/JCLI-D-16-0477.1.
    [3] Chen S F, Wu R G. 2017b. An enhanced influence of sea surface temperature in the tropical northern Atlantic on the following winter ENSO since the early 1980s[J]. Atmos. Oceanic Sci. Lett., 10 (2):175-182, doi: 10.1080/16742834.2016.1259542.
    [4] Chen S F, Wu R G, Chen W. 2015. The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST[J]. J. Climate, 28 (2):485-504, doi: 10.1175/JCLI-D-14-00422.1.
    [5] Chen S F, Wu R G, Liu Y. 2016. Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring[J]. J. Climate, 29 (3):1109-1125, doi: 10.1175/JCLI-D-15-0524.1.
    [6] Cui Y F, Duan A M, Liu Y M. 2015. Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA[J]. Climate Dyn., 45 (5-6):1617-1634, doi: 10.1007/s00382-014-2417-9.
    [7] Dirmeyer P A. 2000. Using a global soil wetness dataset to improve seasonal climate simulation[J]. J. Climate, 13 (16):2900-2922, doi:10.1175/1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.
    [8] 杜梦醒, 林中达, 陆日宇. 2016.1990年代初夏季东北亚低压的年代际转变[J].大气科学, 40 (4):805-816. doi: 10.3878/j.issn.1006-9895.1511.15178

    Du Mengxing, Lin Zhongda, Lu Riyu. 2016. Inter-decadal change in the summertime Northeast Asia low-pressure system in the early 1990s[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (4):805-816, doi:10.3878/j.issn. 1006-9895.1511.15178.
    [9] Du Y, Li T, Xie Z Q, et al. 2016. Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies[J]. Climate Dyn., 46 (7-8):2673-2688, doi: 10.1007/s00382-015-2723-x.
    [10] Enomoto T, Hoskins B J, Matsuda Y. 2003. The formation mechanism of the Bonin high in August[J]. Quart. J. Roy. Meteor. Soc., 129 (587):157-178, doi: 10.1256/qj.01.211.
    [11] Hong X W, Lu R Y. 2016. The meridional displacement of the summer Asian jet, silk road pattern, and tropical SST anomalies[J]. J. Climate, 29 (10):3753-3766, doi: 10.1175/JCLI-D-15-0541.1.
    [12] 黄荣辉, 陈际龙, 刘永. 2011.我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J].大气科学, 35 (4):589-606. doi: 10.3878/j.issn.1006-9895.2011.04.01

    Huang Ronghui, Chen Jilong, Liu Yong. 2011. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (4):589-606, doi: 10.3878/j.issn.1006-9895.2011.04.01.
    [13] 黄荣辉, 刘永, 冯涛. 2013.20世纪90年代末中国东部夏季降水和环流的年代际变化特征及其内动力成因[J].科学通报, 58 (8):617-628. doi: 10.1007/s11434-012-5545-9

    Huang Ronghui, Liu Yong, Feng Tao. 2013. Interdecadal change of summer precipitation over eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes[J]. Chinese Sci. Bull., 58 (12):1339-1349, doi: 10.1007/s11434-012-5545-9.
    [14] Huang R H, Chen J L, Wang L, et al. 2012. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Adv. Atmos. Sci., 29 (5):910-942, doi: 10.1007/s00376-012-2015-x.
    [15] Hurrell J W. 1995. Decadal trends in the North Atlantic Oscillation:Regional temperatures and precipitation[J]. Science, 269 (5224):676-679, doi: 10.1126/science.269.5224.676.
    [16] Hurrell J W, van Loon H. 1997. Decadal variations in climate associated with the North Atlantic Oscillation[J]. Climatic Change, 36 (3-4):301-336, doi: 10.1023/A:1005314315270.
    [17] Kosaka Y, Chowdary J S, Xie S P, et al. 2012. Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific[J]. J. Climate, 25 (21):7574-7589, doi: 10.1175/JCLI-D-12-00009.1.
    [18] 况雪源, 张耀存. 2006a.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象, 25 (3):382-389. doi: 10.3321/j.issn:1000-0534.2006.03.004

    Kuang Xueyuan, Zhang Yaocun. 2006a. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River[J]. Plateau Meteor. (in Chinese), 25 (3):382-389, doi: 10.3321/j.issn:1000-0534.2006.03.004.
    [19] 况雪源, 张耀存. 2006b.东亚副热带西风急流季节变化特征及其热力影响机制探讨[J].气象学报, 64 (5):564-575. doi: 10.3321/j.issn:0577-6619.2006.05.003

    Kuang Xueyuan, Zhang Yaocun. 2006b. The seasonal variation of the East Asian subtropical westerly jet and its thermal mechanism[J]. Acta Meteor. Sinica (in Chinese), 64 (5):564-575, doi: 10.3321/j.issn:0577-6619.2006.05.003.
    [20] Kwon M, Jhun J G, Ha K J. 2007. Decadal change in East Asian summer monsoon circulation in the mid-1990s[J]. Geophys. Res. Lett., 34 (21):L21706, doi: 10.1029/2007GL031977.
    [21] Lau K M, Kim K M, Yang S. 2000. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon[J]. J. Climate, 13 (14):2461-2482, doi:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.
    [22] 李崇银, 王作台, 林士哲, 等. 2004.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J].大气科学, 28 (5):641-658. doi: 10.3878/j.issn.1006-9895.2004.05.01

    Li Chongyin, Wang Joughtai, Lin Shizhei, et al. 2004. The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (5):641-658, doi: 10.3878/j.issn.1006-9895.2004.05.01.
    [23] 李笛, 陈海山. 2017.不同区域海温对亚洲夏季副热带西风急流变异主模态的影响[J].气象科学, 37 (4):425-435. doi: 10.3969/2016jms.0041

    Li Di, Chen Haishan. 2017. Impact of sea surface temperature anomalies in different regions on dominant modes of summer Asian subtropical westerly jet variability[J]. J. Meteor. Sci., 37 (4):425-435, doi: 10.3969/2016jms.0041.
    [24] 廖清海, 高守亭, 王会军, 等. 2004.北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响[J].地球物理学报, 47 (1):10-18. doi: 10.3321/j.issn:0001-5733.2004.01.003

    Liao Qinghai, Gao Shouting, Wang Huijun, et al. 2004. Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies[J]. Chinese J. Geophys. (in Chinese), 47 (1):10-18, doi: 10.3321/j.issn:0001-5733.2004.01.003.
    [25] 林朝晖, 杨小松, 郭裕福. 2001.陆面过程模式对土壤含水量初值的敏感性研究[J].气候与环境研究, 6 (2):240-248. doi: 10.3969/j.issn.1006-9585.2001.02.017

    Lin Zhaohui, Yang Xiaosong, Guo Yufu. 2001. Sensitivity of land surface model to the initial condition of soil moisture[J]. Climatic and Environmental Research (in Chinese), 6 (2):240-248, doi: 10.3969/j.issn.1006-9585.2001.02.017.
    [26] 林中达, 陆日宇. 2004.2003年夏季我国气候异常的背景和环流分析[M]//张庆云, 王会军, 林朝晖, 等.中国天气气候异常成因研究——2003年.北京: 气象出版社, 113-138.

    Lin Zhongda, Lu Riyu. 2004. Background circulation analysis on summer climate anomaly of China in 2003[M]//Zhang Qingyun, Wang Huijun, Lin Zhaohui, et al. Mechanisms of Weather and Climate Anomalies of China in 2003 (in Chinese). Beijing: China Meteorological Press, 113-138.
    [27] Lin Z D. 2010. Relationship between meridional displacement of the monthly East Asian jet stream in the summer and sea surface temperature in the tropical central and eastern Pacific[J]. Atmos. Oceanic Sci. Lett., 3 (1):40-44, doi: 10.1080/16742834.2010.11446840.
    [28] Lin Z D. 2013. Impacts of two types of northward jumps of the East Asian upper-tropospheric jet stream in midsummer on rainfall in eastern China[J]. Adv. Atmos. Sci., 30 (4):1224-1234, doi: 10.1007/s00376-012-2105-9.
    [29] Lin Z D, Lu R Y. 2005. Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer[J]. Adv. Atmos. Sci., 22 (2):199-211, doi: 10.1007/BF02918509.
    [30] Lin Z D, Lu R Y. 2008. Abrupt northward jump of the East Asian upper-tropospheric jet stream in mid-summer[J]. J. Meteor. Soc. Japan, 86 (6):857-866, doi: 10.2151/jmsj.86.857.
    [31] Liu Y, Huang G, Huang R H. 2011. Inter-decadal variability of summer rainfall in eastern China detected by the Lepage test[J]. Theor. Appl. Climatol., 106 (3-4):481-488, doi: 10.1007/s00704-011-0442-8.
    [32] 陆日宇. 2005.华北汛期降水量年际变化与赤道东太平洋海温[J].科学通报, 50 (11):1131-1135. doi: 10.1360/04wd0271

    Lu Riyu. 2005. Interannual variation of North China rainfall in rainy season and SSTs in the equatorial eastern Pacific[J]. Chinese Sci. Bull., 50 (18):2069-2073, doi: 10.1360/04wd0271.
    [33] Lu R Y. 2004. Associations among the components of the East Asian summer monsoon system in the meridional direction[J]. J. Meteor. Soc. Japan, 82 (1):155-165, doi: 10.2151/jmsj.82.155.
    [34] Lu R Y, Oh J H, Kim B J. 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer[J]. Tellus A, 54 (1):44-55, doi: 10.1034/j.1600-0870.2002.00248.x.
    [35] 陆日宇, 林中达, 张耀存. 2013.夏季东亚高空急流的变化及其对东亚季风的影响[J].大气科学, 37 (2):331-340. doi: 10.3878/j.issn.1006-9895.2012.12310

    Lu Riyu, Lin Zhongda, Zhang Yaocun. 2013. Variability of the East Asian upper-tropospheric jet in summer and its impacts on the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2):331-340, doi: 10.3878/j.issn.1006-9895.2012.12310.
    [36] 马音, 陈文, 王林. 2011.中国夏季淮河和江南梅雨期降水异常年际变化的气候背景及其比较[J].气象学报, 69 (2):334-343. doi: 10.11676/qxxb2011.028

    Ma Yin, Chen Wen, Wang Lin. 2011. A comparative study of the interannual variation of summer rainfall anomalies between the Huaihe Meiyu season and the Jiangnan Meiyu season and their climate background[J]. Acta Meteor. Sinica (in Chinese), 69 (2):334-343, doi: 10.11676/qxxb2011.028.
    [37] 马柱国, 符淙斌, 谢力, 等. 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 16 (4):563-568. doi: 10.3321/j.issn:1001-8166.2001.04.019

    Ma Zhuguo, Fu Congbin, Xie Li, et al. 2001. Some problems in the study on the relationship between soil moisture and climatic change[J]. Adv. Earth Sci. (in Chinese), 16 (4):563-568, doi: 10.3321/j.issn:1001-8166.2001.04.019.
    [38] Qu X, Huang G. 2012. Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer[J]. Int. J. Climatol., 32 (13):2073-2080, doi: 10.1002/joc.2378.
    [39] Shukla J, Mintz Y. 1982. Influence of land-surface evapotranspiration on the Earth's climate[J]. Science, 215 (4539):1498-1501, doi: 10.1126/science.215.4539.1498.
    [40] Song Y M, Guo W D, Zhang Y C. 2009. Numerical study of impacts of soil moisture on the diurnal and seasonal cycles of sensible/latent heat fluxes over semi-arid region[J]. Adv. Atmos. Sci., 26 (2):319-326, doi: 10.1007/s00376-009-0319-2.
    [41] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasi-geostrophic eddies on a zonally varying basic flow[J]. J. Atmos. Sci., 58 (6):608-627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
    [42] 陶诗言, 卫捷. 2006.再论夏季西太平洋副热带高压的西伸北跳[J].应用气象学报, 17 (5):513-525. doi: 10.3969/j.issn.1001-7313.2006.05.001

    Tao Shiyan, Wei Jie. 2006. The westward, northward advance of the subtropical high over the west Pacific in summer[J]. J. Appl. Meteor. Sci. (in Chinese), 17 (5):513-525, doi: 10.3969/j.issn.1001-7313.2006.05.001.
    [43] The GLACE Team, Koster R D, Dirmeyer P A, et al. 2004. Regions of strong coupling between soil moisture and precipitation[J]. Science, 30 (5687):1138-1140, doi: 10.1126/science.1100217.
    [44] Wu R G, Chen S F. 2016. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring[J]. Climate Dyn., 47 (7-8):2425-2442, doi: 10.1007/s00382-015-2972-8.
    [45] Wu Z W, Wang B, Li J P, et al. 2009. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO[J]. J. Geophys. Res., 114 (D18):D18120, doi: 10.1029/2009JD011733.
    [46] 徐康, 祝从文, 何金海. 2011a.近50年环贝加尔湖区变暖对中国华北夏季降水的影响机理[J].高原气象, 30 (2):309-317. http://d.old.wanfangdata.com.cn/Periodical/gyqx201102005

    Xu Kang, Zhu Congwen, He Jinhai. 2011a. Impact of the surface air temperature warming around Lake Baikal on trend of summer precipitation in North China in the past 50 years[J]. Plateau Meteor. (in Chinese), 30 (2):309-317. http://d.old.wanfangdata.com.cn/Periodical/gyqx201102005
    [47] 徐康, 何金海, 祝从文. 2011b.近50年中国东部夏季降水与贝加尔湖地表气温年代际变化的关系[J].气象学报, 69 (4):570-580. doi: 10.11676/qxxb2011.050

    Xu Kang, He Jinhai, Zhu Congwen. 2011b. The interdecadal linkage of the summer precipitation in eastern China with the surface air temperature over Lake Baikal in the past 50 years[J]. Acta Meteor. Sinica (in Chinese), 69 (4):570-580, doi: 10.11676/qxxb2011.050.
    [48] 杨莲梅, 张庆云. 2007.夏季东亚西风急流扰动异常与副热带高压关系研究[J].应用气象学报, 18 (4):452-459. doi: 10.3969/j.issn.1001-7313.2007.04.005

    Yang Lianmei, Zhang Qingyun. 2007. Relationships between perturbation kinetic energy anomaly along East Asian westerly jet and subtropical high in summer[J]. J. Appl. Meteor. Sci. (in Chinese), 18 (4):452-459, doi: 10.3969/j.issn.1001-7313.2007.04.005.
    [49] 杨莲梅, 张庆云. 2008.夏季亚洲副热带西风急流气候特征[J].气候与环境研究, 13 (1):10-20. doi: 10.3878/j.issn.1006-9585.2008.01.02

    Yang Lianmei, Zhang Qingyun. 2008. Climate features of summer Asia subtropical westerly jet stream[J]. Climatic and Environmental Research (in Chinese), 13 (1):10-20, doi: 10.3878/j.issn.1006-9585.2008.01.02.
    [50] Ye K H, Wu R G, Liu Y. 2015. Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s[J]. J. Geophys. Res., 120 (7):2738-2753, doi: 10.1002/2015JD023148.
    [51] 葉篤正, 陶诗言, 李麥村. 1958.在六月和十月大气环流的突变现象[J].气象学报, 29 (4):249-263. http://www.cnki.com.cn/Article/CJFDTotal-QXXB195804004.htm

    Yeh Tucheng, Dao Shihyen, Li Meitsiun. 1958. The abrupt change of circulation over Northern Hemisphere during June and October[J]. Acta Meteor. Sinica (in Chinese), 29 (4):249-263. http://www.cnki.com.cn/Article/CJFDTotal-QXXB195804004.htm
    [52] 张莞昕, 陈海山. 2017.陆面热力异常与东亚夏季中纬度气旋年代际变化的联系[J].气象科学, 37 (4):458-465. doi: 10.3969/2016jms.0048

    Zhang Wanxin, Chen Haishan. 2017. Relationship between land surface thermal anomaly and the interdecadal variation of extra-tropical cyclone activity during summer over East Asia[J]. J. Meteor Sci. (in Chinese), 37 (4):458-465, doi: 10.3969/2016jms.0048.
    [53] Zhu Y L, Wang H J, Zhou W, et al. 2011. Recent changes in the summer precipitation pattern in East China and the background circulation[J]. Climate Dyn., 36 (7-8):1463-1473, doi: 10.1007/s00382-010-0852-9.
    [54] Zhu Y L, Wang H J, Ma J H, et al. 2015. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s' shift in East China summer rainfall[J]. J. Geophys. Res., 120 (17):8817-8827, doi: 10.1002/2015JD023545.
    [55] Zuo J Q, Li W J, Sun C H, et al. 2013. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Adv. Atmos. Sci., 30 (4):1173-1186, doi: 10.1007/s00376-012-2125-5.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  10
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-21
  • 网络出版日期:  2018-05-03
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回