高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖北三类组织形态强对流系统造成的地面强对流大风特征

郭英莲 孙继松

郭英莲, 孙继松. 湖北三类组织形态强对流系统造成的地面强对流大风特征[J]. 大气科学, 2019, 43(3): 483-497. doi: 10.3878/j.issn.1006-9895.1812.18206
引用本文: 郭英莲, 孙继松. 湖北三类组织形态强对流系统造成的地面强对流大风特征[J]. 大气科学, 2019, 43(3): 483-497. doi: 10.3878/j.issn.1006-9895.1812.18206
Characteristics of Strong Convective Wind Events Caused by Three Types of Convective Systems in Hubei Province[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 483-497. doi: 10.3878/j.issn.1006-9895.1812.18206
Citation: Characteristics of Strong Convective Wind Events Caused by Three Types of Convective Systems in Hubei Province[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 483-497. doi: 10.3878/j.issn.1006-9895.1812.18206

湖北三类组织形态强对流系统造成的地面强对流大风特征

doi: 10.3878/j.issn.1006-9895.1812.18206
基金项目: 公益性行业(气象)科研项目GYHY201506006公益性行业(气象)科研项目(GYHY201506006)

Characteristics of Strong Convective Wind Events Caused by Three Types of Convective Systems in Hubei Province

Funds: Special Scientific Research Fund of Meteorological Public Welfare Grant GYHY201506006Special Scientific Research Fund of Meteorological Public Welfare (Grant GYHY201506006)
  • 摘要: 利用湖北省2012~2017年区域自动站、天气雷达和周边探空站观测资料,对三类不同组织形态的中尺度对流系统(Mesoscale Convective System, MCS)(线性MCS、非线性MCS和孤立对流风暴)造成的地面强风(极大风速≥17 m/s)的时空分布、移动与传播、对流环境特征等方面进行了统计对比分析,并结合个例讨论了地面入流大风的成因及其对对流系统发展、组织的影响。结果表明:(1)大量的非线性MCS可能是由更早发生在山区和丘陵的孤立对流风暴向平原地区移动过程中组织形成的,孤立对流风暴造成的地面大风出现的峰值时间在17:00(北京时,下同)前后,非线性MCS地面大风的峰值时间在19:00左右;线性MCS造成的强对流大风主要出现在平原地区。(2)非线性MCS和孤立对流风暴是造成湖北省地面大风的主导系统,其中,非线性MCS造成的地面大风站次数占强对流大风站次总数的41.9%,而39.3%的地面强对流大风站次是由孤立对流风暴造成的。(3)虽然大于17 m/s的地面入流大风占所有强对流大风的比例很小,但存在地面入流大风的强对流系统的影响范围、持续时间均远大于同一类型对流系统的平均值。基于一次长生命史线性MCS(飑线)造成强对流大风事件的分析表明:雷暴系统前侧的地面入流大风是由对流强烈发展造成,这支暖湿入流又进一步增强了对流风暴的发展,同时地面入流大风的形成进一步加强了垂直风切变,因而强的地面入流更有利于对流系统的组织化发展。(4)虽然暖季强对流系统的平均引导气流均以西南风为主,但线性MCS主要自西向东移动、非线性MCS以自西南向东北移动为主、孤立对流风暴的移动方向则更具多样性,也更易出现后向传播现象。孤立对流风暴相对组织化的强对流系统而言,往往发生在更不稳定或更干的层结大气中,且环境垂直风切变更弱、风速更小。
  • [1] Bluestein H B. 2009. The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007[J]. Wea. Forecasting, 24(4): 899-920. doi:10.1175/2009WAF2222206.1
    [2] Bluestein H B, Weisman M L. 2000. The interaction of numerically simulated supercells initiated along lines[J]. Mon. Wea. Rev., 128(9): 3128-3149. doi:10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2
    [3] Bluestein H B, Weiss C C, Pazmany A L. 2004. The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations[J]. Mon. Wea. Rev., 132(10): 2325-2337. doi:10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2
    [4] 陈明轩, 王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J]. 气象学报, 70(3): 371-386. Chen M X, Wang Y C. 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China[J]. Acta Meteorologica Sinica (in Chinese), 70(3): 371-386. doi:10.11676/qxxb2012.033
    [5] Chen M X, Wang Y C, Gao F, et al. 2012. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology [J]. J. Geophys. Res. Atmos., 117(D20): D20115. doi:10.1029/2012JD018158
    [6] 程宏林, 王才宝, 洪贞铨, 等. 1996. 江苏内河航运交通事故气象条件分析[J]. 气象, 22(12): 51-53. Cheng H L, Wang C B, Hong Z Q,et al. 1996. Analysis of meteorological conditions of traffic accidents in inland waterways in Jiangsu Province[J]. Meteor. Mon. (in Chinese), 22(12): 51-53. doi:10.7519/j.issn.1000-0526.1996.12.014
    [7] Corfidi S F, Meritt J H, Fritsch J M. 1996. Predicting the movement of mesoscale convective complexes[J]. Wea. Forecasting, 11(1): 41-46. doi:10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2
    [8] 崔讲学, 张家国, 王仁乔, 等. 2007. 武汉一次下击暴流天气的成因分析[J]. 暴雨灾害, 26(4): 369-371. Cui J X, Zhang J G, Wang R Q,et al. 2007. Analysis on a downburst events occurred in Wuhan area[J]. Torrential Rain and Disasters (in Chinese), 26(4): 369-371. doi:10.3969/j.issn.1004-9045.2007.04.017
    [9] Dawson II D T, Mansell E R, Jung Y, et al. 2014. Low-level ZDR signatures in supercell forward slanks: The role of size sorting and melting of hail [J]. J. Atmos. Sci., 71(1): 276-299. doi:10.1175/JAS-D-13-0118.1
    [10] Doswell III C A. 2001. Severe Convective Storms [M]. Boston: American Meteorological Society, 562pp. doi:10.1007/978-1-935704-06-5
    [11] Dowell D C, Bluestein H B. 2002. The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation[J]. Mon. Wea. Rev., 130(11): 2649-2670. doi:10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2
    [12] 段亚鹏, 王东海, 刘英. 2017. “东方之星”翻沉事件强对流天气分析及数值模拟[J]. 应用气象学报, 28(6): 666-677. Duan Y P, Wang D H, Liu Y. 2017. Radar analysis and numerical simulation of strong convective weather for “Oriental Star” depression[J]. J. Appl. Meteor. Sci. (in Chinese), 28(6): 666-677. doi:10.11898/1001-7313.20170603
    [13] 费海燕, 王秀明, 周小刚, 等. 2016. 中国强雷暴大风的气候特征和环境参数分析[J]. 气象, 42(12): 1513-1521. Fei H Y, Wang X M, Zhou X G,et al. 2016. Climatic characteristics and environmental parameters of severe thunderstorm gale in China[J]. Meteor. Mon. (in Chinese), 42(12): 1513-1521. doi:10.7519/j.issn.1000-0526.2016.12.009
    [14] French A J, Parker M D. 2014. Numerical simulations of bow echo formation following a squall line-supercell merger[J]. Mon. Wea. Rev., 142(12): 4791-4822. doi:10.1175/MWR-D-13-00356.1
    [15] Fujita T T. 1981. Tornadoes and downbursts in the context of generalized planetary scales[J]. J. Atmos. Sci., 38(8): 1511-1534. doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
    [16] Fujita T T. 1985. The downburst: Microburst and macroburst: Report of projects NIMROD and JAWS [R]. Satellite and Mesometeorology Research Project paper #210
    [17] Fujita T T, Wakimoto R M. 1981. Five scales of airflow associated with a series of downbursts on 16 July 1980[J]. Mon. Wea. Rev., 109(7): 1438-1456. doi:10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2
    [18] Hjelmfelt M R. 1988. Structure and life cycle of microburst outflows observed in Colorado[J]. J. Appl. Meteor., 27(8): 900-927. doi:10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
    [19] Houze Jr R A. 2004. Mesoscale convective systems[J]. Rev. Geophys., 42(4): RG4003. doi:10.1029/2004RG000150
    [20] Kelly D L, Schaefer J T, Doswell III C A. 1985. Climatology of nontornadic severe thunderstorm events in the United States[J]. Mon. Wea. Rev., 113(11): 1997-2014. doi:10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2
    [21] Kramar M R, Bluestein H B, Pazmany A L, et al. 2005. The “Owl Horn” radar signature in developing southern plains supercells [J]. Mon. Wea. Rev., 133(9): 2608-2634. doi:10.1175/MWR2992.1
    [22] 李国翠, 刘黎平, 张秉祥, 等. 2013. 基于雷达三维组网数据的对流性地面大风自动识别[J]. 气象学报, 71(6): 1160-1171. Li G C, Liu L P, Zhang B X,et al. 2013. Automatic identification of ground thunderstorm gale based on the radar mosaic 3D data[J]. Acta Meteorologica Sinica (in Chinese), 71(6): 1160-1171. doi:10.11676/qxxb2013.090
    [23] 李国翠, 刘黎平, 连志鸾, 等. 2014. 利用雷达回波三维拼图资料识别雷暴大风统计研究[J]. 气象学报, 72(1): 168-181. Li G C, Liu L P, Lian Z L,et al. 2014. Statistical study of the identification of thunderstorm gale based on the radar 3D mosaic data[J]. Acta Meteorologica Sinica (in Chinese), 72(1): 168-181. doi:10.11676/qxxb2014.003
    [24] 刘健文, 郭虎, 李耀东, 等. 2005. 天气分析预报物理量计算基础 [M]. 北京:
    [25] 刘菡, 包云轩, 袁成松, 等. 2014. 长江航道江苏段强风和强横风的时空分布特征研究[J]. 自然灾害学报, 23(4): 155-169. Liu H, Bao Y X, Yuan C S,et al. 2014. Study on spatiotemporal distribution characteristic of strong breeze and strong crosswind in Jiangsu section of the Yangtze River waterway[J]. Journal of Natural Disasters (in Chinese), 23(4): 155-169. doi:10.13577/j.jnd.2014.0421
    [26] Lombardo K A, Colle B A. 2010. The spatial and temporal distribution of organized convective structures over the Northeast and their ambient conditions[J]. Mon. Wea. Rev., 138(12): 4456-4474. doi:10.1175/2010MWR3463.1
    [27] 罗辉, 张杰, 朱克云, 等. 2015. 下击暴流的雷达预警量化指标研究[J]. 气象学报, 73(5): 853-867. Luo H, Zhang J, Zhu K Y,et al. 2015. Study of the radar quantitative index of forewarning downburst[J]. Acta Meteorologica Sinica (in Chinese), 73(5): 853-867. doi:10.11676/qxxb2015.058
    [28] Lyu H M, Wang G F, Cheng W C, et al. 2017. Tornado hazards on June 23 in Jiangsu Province, China: Preliminary investigation and analysis [J]. Natural Hazards, 85(1): 597-604. doi:10.1007/s11069-016-2588-2
    [29] Meng Z Y, Yan D C, Zhang Y J. 2013. General features of squall lines in East China[J]. Mon. Wea. Rev., 141(5): 1629-1647. doi:10.1175/MWR-D-12-00208.1
    [30] Meng Z Y, Yao D, Bai L Q, et al. 2016. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations [J]. Science Bulletin, 61(4): 330-337. doi:10.1007/s11434-016-1005-2
    [31] Orf L, Wilhelmson R B, Lee B, et al. 2017. Evolution of a long-track violent tornado within a simulated supercell [J]. Bull. Amer. Meteor. Soc., 98(1): 45-68. doi:10.1175/BAMS-D-15-00073.1
    [32] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems[J]. Mon. Wea. Rev., 128(10): 3413-3436. doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
    [33] Schoen J M, Ashley W S. 2011. A climatology of fatal convective wind events by storm type[J]. Wea. Forecasting, 26(1): 109-121. doi:10.1175/2010WAF2222428.1
    [34] 孙继松, 陶祖钰. 2012. 强对流天气分析与预报中的若干基本问题[J]. 气象, 38(2): 164-173. Sun J S, Tao Z Y. 2012. Some essential issues connected with severe convective weather analysis and forecast[J]. Meteor. Mon. (in Chinese), 38(2): 164-173. doi:10.7519/j.issn.1000-0526.2012.2.004
    [35] 孙凌峰, 郭学良, 孙立潭, 等. 2003. 武汉“6·22”空难下击暴流的三维数值模拟研究[J]. 大气科学, 27(6): 1077-1092. Sun L F, Guo X L, Sun L T,et al. 2003. A numerical study of the airplane disaster-producing microburst on 22 June 2000 in Wuhan[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(6): 1077-1092. doi:10.3878/j.issn.1006-9895.2003.06.11
    [36] 孙继松, 戴建华, 何立富, 等. 2014. 强对流天气预报的基本原理与技术方法——中国强对流天气预报手册 [M]. 北京:
    [37] 孙敏, 戴建华, 袁招洪, 等. 2015. 双多普勒雷达风场反演对一次后向传播雷暴过程的分析[J]. 气象学报, 73(2): 247-262. Sun M, Dai J H, Yuan Z H,et al. 2015. Analysis of a back-propogating thunderstorm using the three-dimensional wind fields retrieved by the dual-Doppler radar Data[J]. Acta Meteorologica Sinica (in Chinese), 73(2): 247-262. doi:10.11676/qxxb2015.012
    [38] Tippett M K, Lepore C, Cohen J E. 2016. More tornadoes in the most extreme U.S. tornado outbreaks [J]. Science, 354(6318): 1419-1423. doi:10.1126/science.aah7393
    [39] Uebel M, Bott A. 2015. Mesoscale air transport at a midlatitude squall line in Europe—A numerical analysis[J]. Quart. J. Roy. Meteor. Soc., 141(693): 3297-3311. doi:10.1002/qj.2610
    [40] Wakimoto R M. 1985. Forecasting dry microburst activity over the high plains[J]. Mon. Wea. Rev, 113(7): 1131-1143. doi:10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2
    [41] Wakimoto R M, Murphey H V, Dowell D C, et al. 2003. The Kellerville tornado during VORTEX: Damage survey and Doppler radar analyses [J]. Mon. Wea. Rev., 131(10): 2197-2221. doi:10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2
    [42] 王秀明, 周小刚, 俞小鼎. 2013. 雷暴大风环境特征及其对风暴结构影响的对比研究[J]. 气象学报, 71(5): 839-852. Wang X M, Zhou X G, Yu X D. 2013. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures[J]. Acta Meteorologica Sinica (in Chinese), 71(5): 839-852. doi:10.11676/qxxb2013.073
    [43] 王福侠, 俞小鼎, 裴宇杰, 等. 2016. 河北省雷暴大风的雷达回波特征及预报关键点[J]. 应用气象学报, 27(3): 342-351. Wang F X, Yu X D, Pei Y J,et al. 2016. Radar echo characteristics of thunderstorm gales and forecast key points in Hebei Province[J]. J. Appl. Meteor. Sci. (in Chinese), 27(3): 342-351. doi:10.11898/1001-7313.20160309
    [44] 徐芬, 杨吉, 夏文梅, 等. 2015. 雷达强度数据中的阵风锋特征统计和自动识别[J]. 高原气象, 34(2): 586-595. Xu F, Yang J, Xia W M,et al. 2015. Statistical characteristics and automatic detection of the gust front in radar reflectivity data[J]. Plateau Meteor. (in Chinese), 34(2): 586-595. doi:10.7522/j.issn.1000-0534.2014.00005
    [45] Xue M, Hu M, Schenkman A D. 2014. Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data[J]. Wea. Forecasting, 29(1): 39-62. doi:10.1175/WAF-D-13-00029.1
    [46] Xue M, Zhao K, Wang M J, et al. 2016. Recent significant tornadoes in China [J]. Advances in Atmospheric Sciences, 33(11): 1209-1217. doi:10.1007/s00376-016-6005-2
    [47] Yang X L, Sun J H. 2018. Organizational modes of severe wind-producing convective systems over North China[J]. Advances in Atmospheric Sciences, 35(5): 540-549. doi:10.1007/s00376-017-7114-2
    [48] Yang H L, Xiao H, Guo C W. 2015. Structure and evolution of a squall line in northern China: A case study[J]. Atmospheric Research, 158-159: 139-157. doi:10.1016/j.atmosres.2015.02.012
    [49] Yang X L, Sun J H, Zheng Y G. 2017. A 5-yr climatology of severe convective wind events over China[J]. Wea. Forecasting, 32(4): 1289-1299. doi:10.1175/WAF-D-16-0101.1
    [50] 俞小鼎, 姚秀萍, 熊廷南, 等. 2006. 多普勒天气雷达原理与业务应用 [M]. 北京:
    [51] 余蓉, 张小玲, 李国平, 等. 2012. 1971~2000年我国东部地区雷暴、冰雹、雷暴大风发生频率的变化[J]. 气象, 38(10): 1207-1216. Yu R, Zhang X L, Li G P,et al. 2012. Analysis of frequency variation of thunderstorm, hail and gale wind in eastern China from 1971 to 2000[J]. Meteor. Mon. (in Chinese), 38(10): 1207-1216. doi:10.7519/j.issn.1000-0526.2012.10.006
    [52] 张建军, 王咏青, 钟玮. 2016. 飑线组织化过程对环境垂直风切变和水汽的响应[J]. 大气科学, 40(4): 689-702. Zhang J J, Wang Y Q, Zhong W. 2016. Impact of vertical wind shear and moisture on the organization of squall lines[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 689-702. doi:10.3878/j.issn.1006-9895.1505.14337
    [53] Zheng D, MacGorman D R. 2016. Characteristics of flash initiations in a supercell cluster with tornadoes[J]. Atmospheric Research, 167: 249-264. doi:10.1016/j.atmosres.2015.08.015
    [54] 郑永光, 陈炯, 朱佩君. 2008. 中国及周边地区夏季中尺度对流系统分布及其日变化特征[J]. 科学通报, 53(4): 471-481. Zheng Y G, Chen Y, Zhu P J. 2008. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J]. Chinese Science Bulletin, 53(10): 1574-1586
    [55] 郑永光, 田付友, 孟智勇, 等. 2016. “东方之星”客轮翻沉事件周边区域风灾现场调查与多尺度特征分析[J]. 气象, 42(1): 1-13. Zheng Y G, Tian F Y, Meng Z Y,et al. 2016. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise Ship “Dongfangzhixing”[J]. Meteor. Mon. (in Chinese), 42(1): 1-13. doi:10.7519/j.issn.1000-0526.2016.01.001
    [56] 周康辉, 郑永光, 王婷波, 等. 2017. 基于模糊逻辑的雷暴大风和非雷暴大风区分方法[J]. 气象, 43(7): 781-791. Zhou K H, Zheng Y G, Wang T B,et al. 2017. Fuzzy logic algorithm of thunderstorm gale identification using multisource data[J]. Meteor. Mon. (in Chinese), 43(7): 781-791. doi:10.7519/j.issn.1000-0526.2017.07.002
  • 加载中
计量
  • 文章访问数:  989
  • HTML全文浏览量:  1
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30

目录

    /

    返回文章
    返回