高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云滴数浓度对超级单体龙卷影响的数值模拟研究

王霁吟 陈宝君 郑凯琳 花少烽

王霁吟, 陈宝君, 郑凯琳, 花少烽. 云滴数浓度对超级单体龙卷影响的数值模拟研究[J]. 大气科学, 2019, 43(6): 1413-1423. doi: 10.3878/j.issn.1006-9895.1903.18241
引用本文: 王霁吟, 陈宝君, 郑凯琳, 花少烽. 云滴数浓度对超级单体龙卷影响的数值模拟研究[J]. 大气科学, 2019, 43(6): 1413-1423. doi: 10.3878/j.issn.1006-9895.1903.18241
WANG Jiyin, CHEN Baojun, ZHENG Kailin, HUA Shaofeng. A Numerical Study of the Influence of the Droplets Number Concentration on Supercell Tornadoes[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1413-1423. doi: 10.3878/j.issn.1006-9895.1903.18241
Citation: WANG Jiyin, CHEN Baojun, ZHENG Kailin, HUA Shaofeng. A Numerical Study of the Influence of the Droplets Number Concentration on Supercell Tornadoes[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1413-1423. doi: 10.3878/j.issn.1006-9895.1903.18241

云滴数浓度对超级单体龙卷影响的数值模拟研究

doi: 10.3878/j.issn.1006-9895.1903.18241
基金项目: 国家自然科学基金项目41175118、41775132,浙江省气象科技项目2018QN15,浙江省科技厅重大项目2017C03035,浙江省气象科技重点项目2016ZD17

A Numerical Study of the Influence of the Droplets Number Concentration on Supercell Tornadoes

Funds: National Natural Science Foundation of China Grants 41175118 and 41775132;Meteorological Science and Technology Project of Zhejiang Province Grant 2018QN15;Major Project of the Science and Technology Department of Zhejiang Province Grant 2017C03035;Major Meteorological Science and Technology Project of Zhejiang Province Grant 2016ZD17National Natural Science Foundation of China (Grants 41175118 and 41775132), Meteorological Science and Technology Project of Zhejiang Province (Grant 2018QN15), Major Project of the Science and Technology Department of Zhejiang Province (Grant 2017C03035), Major Meteorological Science and Technology Project of Zhejiang Province (Grant 2016ZD17)
  • 摘要: 为了探讨云滴数浓度对于龙卷发生、发展的影响,利用ARPS(Advanced Regional Prediction System)模式,通过调整云滴数浓度(分别取高3000 cm-3、中1000 cm-3和低100 cm-3)的变化,对2003年7月8日安徽省无为县超级单体龙卷进行理想模拟试验。研究表明:三组试验都模拟出超级单体风暴的特征结构如钩状回波和V型入流缺口;云滴数浓度高的试验中上升气流更强、风暴较先发展且持续时间长,近地面涡度也较其他两组试验更大;从三组试验中找到4个龙卷涡旋,其中云滴数浓度高的试验中有两个,涡旋总持续时间接近30 min,最大近地面风速为46.93 m s-1,最大涡度值为0.42 s-1;高云滴数浓度情况下地面冷池弱,更有利于龙卷产生,并对龙卷的发生、发展有促进作用。
      关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Brooks H E, Lee J W, Craven J P. 2003. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data [J]. Atmos. Res., 67-68: 73-94. doi: 10.1016/S0169-8095(03)00045-0
    [2] Caya A, Sun J, Snyder C. 2005. A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation [J]. Mon. Wea. Rev., 133(11): 3081-3094. doi: 10.1175/MWR3021.1
    [3] Craven J P, Brooks H E. 2004. Baseline climatology of sounding derived parameters associated with deep moist convection [J]. Nat. Wea. Digest, 28: 13-24.
    [4] Dawson II D T, Xue M, Milbrandt J A, et al. 2010. Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms [J]. Mon. Wea. Rev., 138(4): 1152-1171. doi: 10.1175/2009MWR2956.1
    [5] Fujita T T. 1981. Tornadoes and downbursts in the context of generalized planetary scales [J]. J. Atmos. Sci., 38(8): 1511-1534. doi: 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
    [6] Fujita T T, Bradbury D L, van Thullenar C F. 1970. Palm Sunday tornadoes of April 11, 1965 [J]. Mon. Wea. Rev., 98(1): 29-69. doi: 10.1175/1520-0493(1970)098<0029:PSTOA>2.3.CO;2
    [7] Gao J D, Xue M. 2008. An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data [J]. Mon. Wea. Rev., 136(3): 945-963. doi: 10.1175/2007MWR2120.1
    [8] Gilmore M S, Straka J M, Rasmussen E N. 2004a. Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics [J]. Mon. Wea. Rev., 132(8): 1897-1916. doi: 10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2
    [9] Gilmore M S, Straka J M, Rasmussen E N. 2004b. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme [J]. Mon. Wea. Rev., 132(11): 2610-2627. doi: 10.1175/MWR2810.1
    [10] Lerach D G, Cotton W R. 2012. Comparing aerosol and low-level moisture influences on supercell tornadogenesis: Three-dimensional idealized simulations [J]. J. Atmos. Sci., 69(3): 969-987. doi: 10.1175/JAS-D-11-043.1
    [11] Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow ?eld in a cloud model [J]. J. Climate Appl. Meteor., 22(6): 1065-1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
    [12] Rosenfeld D, Ulbrich C W. 2003. Cloud microphysical properties, processes, and rainfall estimation opportunities [M]//Wakimoto R M, Srivastava R. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Boston, MA: American Meteorological Society, 237-258. doi: 10.1007/978-1-878220-36-3_10
    [13] Rosenfeld D, Lohmann U, Raga G B, et al. 2008. Flood or drought: How do aerosols affect precipitation? [J]. Science, 321(5894): 1309-1313. doi: 10.1126/science.1160606
    [14] Rosenfeld D, Axisa D, Woodley W L, et al. 2010. A quest for effective hygroscopic cloud seeding [J]. J. Appl. Meteor. Climatol., 49(7): 1548-1562. doi: 10.1175/2010JAMC2307.1
    [15] Snook N, Xue M. 2006. Sensitivity of tornadogenesis in very-high-resolution numerical simulations to variations in model microphysical parameters [C]//Proceedings of the 23rd Conference on Severe Local Storms. St. Louis, MO: American Meteorological Society.
    [16] 孙凌峰, 郭学良, 孙立潭, 等. 2003. 武汉“6·22”空难下击暴流的三维数值模拟研究 [J]. 大气科学, 27(6): 1077-1092.
    [17] 王霁吟, 陈宝君, 宋金杰, 等. 2015. 基于再分析资料的我国龙卷发生环境和通用龙卷指标 [J]. 气候与环境研究, 20(4): 411-420.
    [18] Wicker L J, Wilhelmson R B. 1995. Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm [J]. J. Atmos. Sci., 52(51): 2675-2703. doi: 10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2
    [19] Wilson J W. 1986. Tornadogenesis by nonprecipitation induced wind shear lines [J]. Mon. Wea. Rev., 114(2): 270-284. doi: 10.1175/1520-0493(1986)114<0270:TBNIWS>2.0.CO;2
    [20] Xie B G, Zhang Q H, Wang Y Q. 2010. Observed characteristics of hail size in four regions in China during 1980-2005 [J]. J. Climate, 23(18): 4973-4982. doi: 10.1175/2010JCLI3600.1
    [21] 许焕斌, 魏绍远. 1995. 下击暴流的数值模拟研究 [J]. 气象学报, 53(2): 168-176.
    [22] Xue M, Droegemeier K K, Wong V. 2000. The advanced regional prediction system (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification [J]. Meteor. Atmos. Phys., 75(3-4): 161-193. doi: 10.1007/s007030070003
    [23] Xue M, Droegemeier K K, Wong V, et al. 2001. The advanced regional prediction system (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications [J]. Meteor. Atmos. Phys., 76(3-4): 143-165. doi: 10.1007/s007030170027
    [24] Xue M, Wang D H, Gao J D, et al. 2003. The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation [J]. Meteor. Atmos. Phys., 82(1-4): 139-170. doi: 10.1007/s00703-001-0595-6
    [25] 俞小鼎, 姚秀萍, 熊廷南, 等. 2006. 多普勒天气雷达原理与业务应用 [M]. 北京: 气象出版社, 267-279
    [26] Zheng K L, Chen B J. 2014. Sensitivities of tornadogenesis to drop size distribution in a simulated subtropical supercell over eastern China [J]. Adv. Atmos. Sci.,2014, 31(3): 657-668. doi: 10.1007/s00376-013-3143-7
  • 加载中
计量
  • 文章访问数:  468
  • HTML全文浏览量:  1
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-24

目录

    /

    返回文章
    返回