高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究

蔡兆鑫 蔡淼 李培仁 李军霞 孙鸿娉 顾宇 高欣

蔡兆鑫, 蔡淼, 李培仁, 李军霞, 孙鸿娉, 顾宇, 高欣. 大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究[J]. 大气科学, 2019, 43(6): 1191-1203. doi: 10.3878/j.issn.1006-9895.1903.19113
引用本文: 蔡兆鑫, 蔡淼, 李培仁, 李军霞, 孙鸿娉, 顾宇, 高欣. 大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究[J]. 大气科学, 2019, 43(6): 1191-1203. doi: 10.3878/j.issn.1006-9895.1903.19113
CAI Zhaoxin, CAI Miao, LI Peiren, LI Junxia, SUN Hongping, GU Yu, GAO Xin. Aircraft Observation Research on Macro and Microphysics Characteristics of Continental Cumulus Cloud at DifferentDevelopment Stages[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1191-1203. doi: 10.3878/j.issn.1006-9895.1903.19113
Citation: CAI Zhaoxin, CAI Miao, LI Peiren, LI Junxia, SUN Hongping, GU Yu, GAO Xin. Aircraft Observation Research on Macro and Microphysics Characteristics of Continental Cumulus Cloud at DifferentDevelopment Stages[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1191-1203. doi: 10.3878/j.issn.1006-9895.1903.19113

大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究

doi: 10.3878/j.issn.1006-9895.1903.19113
基金项目: 山西省气象局重点项目SXKZDRY20185106,中国气象局云雾物理环境重点开放实验室开放课题2018Z01601,国家自然基金项目41805111

Aircraft Observation Research on Macro and Microphysics Characteristics of Continental Cumulus Cloud at DifferentDevelopment Stages

Funds: Key Project of Shanxi Meteorological Administration Grant SXKZDRY20185106;Open Project of Key Laboratory for Cloud Physics of China Meteorological Administration Grant 2018Z01601;National Natural Science Foundation of China Grant 41805111Key Project of Shanxi Meteorological Administration (Grant SXKZDRY20185106), Open Project of Key Laboratory for Cloud Physics of China Meteorological Administration (Grant 2018Z01601), National Natural Science Foundation of China (Grant 41805111)
  • 摘要: 2014年7月3日,山西省人工降雨防雹办公室在该省忻州地区开展了国内首次大陆性积云飞机穿云探测。本文利用机载云物理探测资料,分析研究了不同发展阶段的积云宏、微观物理特性,主要结论有:(1)初生发展阶段的积云水平尺度约为8.2 km×5.5 km(经向×纬向,下同),云厚约2 km;云中以小云粒子为主,云滴凝结增长;水平方向上,云液水含量(LWC)和粒子浓度(Nc)的最大值均位于云体中心位置;垂直方向上,云水分布相对均匀,但随着高度增加,云粒子浓度变小,粒子尺度增大;粒子谱符合伽马分布,峰值量级为102 cm-3 μm-1,谱宽在100 μm以下。(2)成熟阶段的积云水平尺度约为4.6 km×10 km,云厚约4 km;云内可以观测到积冰和雨线;小云粒子浓度随高度增加起伏变化,3600 m、4100 m和4900 m高度处存在峰值;大云粒子浓度随高度先增加后减小,最大值出现云底以上1.6 km高度,云底以上1.3 km高度附近有降水粒子形成;粒子谱呈多峰分布,暖区符合伽马分布,冷区为伽马分布和M-P分布相结合,且随着高度的增加拓宽,4400 m高度以下的谱宽小于200 μm。(3)消散阶段积云尺度约为11 km×5.6 km,云厚约2 km,云下有降水粒子存在。
  • [1] Baker B, Mo Q X, Lawson R P, et al. 2010. Drop size distributions and the lack of small drops in RICO rain shafts [J]. J. Appl. Meteor. Climatol., 48(3): 616-623. doi: 10.1175/2008jamc1934.1
    [2] Blyth A M, Benestad R E, Krehbiel P R. 1997. Observations of supercooled raindrops in New Mexico summertime cumuli [J]. J. Atmos. Sci., 54(4): 569-575. doi: 10.1175/1520-0469(1997)054<0569:OOSRIN>2.0.CO;2
    [3] Boutle I A, Abel S J, Hill P G, et al. 2014. Spatial variability of liquid cloud and rain: Observations and microphysical effects [J]. Quart. J. Roy. Meteor. Soc., 140(679): 583-594. doi: 10.1002/qj.2140
    [4] Byers H R, Braham R R. 1949. The thunderstorm: Report of the thunderstorm project [R]. Washington, U.S.
    [5] Dye J E, Martner B E, Miller L J. 1983. Dynamical-microphysical evolution of a convective storm in a weakly-sheared environment. Part I: Microphysical observations and interpretation [J]. J. Atmos. Sci., 40(9): 2083-2096. doi: 10.1175/1520-0469(1983)040<2083:DMEOAC>2.0.CO;2
    [6] Gultepe I, Isaac G A, Leaitch W R, et al. 1996. Parameterization of marine stratus microphysics based on in situ observations: Implications for GCMs [J]. J. Climate, 9, 345-357. doi: 10.1175/1520-0442(1996)0092.0.CO
    [7] Gultepe I, Isaac G A, 2004. Aircraft observations of cloud droplet number concentration: Implications for climate studies [J]. Q. J. R. Meteorol . Soc. 130, 2377-2390. doi: 10.1256/qj.03.120
    [8] Hudson J G, Yum S S. 2001. Maritime-continental drizzle contrasts in small cumuli [J]. J. Atmos. Sci., 58(8): 915-926. doi: 10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2
    [9] Lamer K, Kollias P, Nuijens L. 2015. Observations of the variability of shallow trade wind cumulus cloudiness and mass flux [J]. J. Geophys. Res. Atmos., 120(12): 6161-6178. doi: 10.1002/2014JD022950
    [10] Lasher-Trapp S, Anderson-Bereznicki S, Shackelford A, et al. 2008. An investigation of the influence of droplet number concentration and giant aerosol particles upon supercooled large drop formation in wintertime stratiform clouds [J]. J. Appl. Meteor. Climatol., 47(10): 2659-2678. doi: 10.1175/2008JAMC1807.1
    [11] Lasher-Trapp S G, Knight C A, Straka J M. 2001. Early radar echoes from ultragiant aerosol in a cumulus congestus: Modeling and observations [J]. J. Atmos. Sci., 58: 3545-3562. doi: 10.1175/1520-0469(2001)058<3545:EREFUA>2.0.CO;2
    [12] McFarquhar G M, Cober S G. 2004. Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer [J]. J. Climate, 17(19): 3799-3813. doi: 10.1175/1520-0442(2004)017<3799:SPOMAC>2.0.CO;2
    [13] McFarquhar G M, Zhang G, Poellot M R, et al. 2007. Ice properties of single-layer stratocumulus during the mixed-phase Arctic cloud experiment. I: Observations [J]. J. Geophys. Res. Atmos., 112(D24): D24201. doi: 10.1029/2007JD008633
    [14] Nuijens L, Serikov I, Hirsch L, et al. 2014. The distribution and variability of low‐level cloud in the North Atlantic trades [J]. Quart. J. Roy. Meteor. Soc., 140(684): 2364-2374. doi: 10.1002/qj.2307
    [15] Padmakumari B, Maheskumar R S, Anand V, et al. 2017. Microphysical characteristics of convective clouds over ocean and land from aircraft observations [J]. Atmospheric Research, 195: 62-71. doi: 10.1016/j.atmosres.2017.05.011
    [16] Rangno A L, Hobbs P V, 2005. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Paci?c Ocean [J]. Q. J. R. Meteorol. Soc. 131, 639-673. doi: 10.1256/qj.04.13
    [17] Rauber R M, Stevens B, Ochs III H T, et al. 2007. Rain in shallow cumulus over the ocean: The RICO campaign [J]. Bull. Amer. Meteor. Soc., 88(12): 1912-1928. doi: 10.1175/BAMS-88-12-1912
    [18] Rauber R M, Zhao G Y, Di Girolamo L, et al. 2013. Aerosol size distribution, particle concentration, and optical property variability near Caribbean trade cumulus clouds: Isolating effects of vertical transport and cloud processing from humidification using aircraft measurements [J]. Journal of the Atmospheric Sciences, 70(10): 3063-3083. doi: 10.1175/JAS-D-12-0105.1
    [19] Rosenfeld D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall [J]. Geophys. Res. Lett., 26(20): 3105-3108. doi: 10.1029/1999GL006066
    [20] Rosenfeld D. 2000. Suppression of rain and snow by urban and industrial air pollution [J]. Science, 287(5459): 1793-1796. doi: 10.1126/science.287.5459.1793
    [21] Rosenfeld D, Lensky I M. 1998. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds [J]. Bull. Amer. Meteor. Soc., 79(11): 2457-2476. doi: 10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2
    [22] Rosenfeld D, Lohmann U, Raga G B, et al. 2008. Flood or drought: How do aerosols affect precipitation? [J]. Science, 321(5894): 1309-1313. doi: 10.1126/science.1160606
    [23] 盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学 [M]. 北京:
    [24] Smith R B, Schafer P, Kirshbaum D J, et al. 2009. Orographic precipitation in the tropics: Experiments in Dominica [J]. J. Atmos. Sci., 66(6): 1698-1716. doi: 10.1175/2008JAS2920.1
    [25] Smith R B, Minder J R, Nugent A D, et al. 2012. Orographic precipitation in the tropics: The Dominica experiment [J]. Bull. Amer. Meteor. Soc., 93(10): 1567-1579. doi: 10.1175/BAMS-D-11-00194.1
    [26] Snodgrass E R, Di Girolamo L, Rauber R M. 2009. Precipitation characteristics of trade wind clouds during RICO derived from radar, satellite, and aircraft measurements [J]. J. Appl. Meteor. Climatol., 48(3): 464-483. doi: 10.1175/2008JAMC1946.1
    [27] Stull R B, Eloranta E W. 1984. Boundary layer experiment—1983 [J]. Bull. Amer. Meteor. Soc., 65(5): 450-456. doi: 10.1175/1520-0477(1984)065<0450:BLE>2.0.CO;2
    [28] Tian J J, Dong X Q, Xi B K, et al. 2016. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements [J]. J. Geophys. Res. Atmos., 121(18): 10820-10839. doi: 10.1002/2015JD024686
    [29] Vogelmann A M, McFarquhar G M, Ogren J A, et al. 2012. RACORO extended-term aircraft observations of boundary layer clouds [J]. Bull. Amer. Meteor. Soc., 93(6): 861-878. doi: 10.1175/BAMS-D-11-00189.1
    [30] 王永庆. 2015. 海洋性浅对流云雨滴形成的微物理和动力机制的数值模拟研究 [D]. 中国科学院大学博士学位论文. Wang Y Q. 2015. Numerical investigation for microphysical and dynamical mechanisms of the rain drop formation in the shallow maritime cumuli [D]. Ph. D. dissertation (in Chinese), University of Chinese Academy of Sciences.
    [31] Warner J. 1969a. The microstructure of cumulus cloud. Part I: General features of the droplet spectrum [J]. J. Atmos. Sci., 26(5): 1049-1059. doi: 10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2
    [32] Warner J. 1969b. The microstructure of cumulus cloud. Part II: The effect on droplet size distribution of the cloud nucleus spectrum and updraft velocity [J]. J. Atmos. Sci., 26(6): 1272-1282. doi: 10.1175/1520-0469(1969)026<1272:TMOCCP>2.0.CO;2
    [33] Warner J. 1970. The microstructure of cumulus cloud. Part III: The nature of the updraft [J]. J. Atmos. Sci., 27(4): 682-688. doi: 10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;2
    [34] Yang J, Wang Z E. 2016. Liquid-ice mass partition in tropical maritime convective clouds [J]. J. Atmos. Sci., 73(12): 4959-4978. doi: 10.1175/JAS-D-15-0145.1
    [35] Zhang Q, Quan J N, Tie X X, et al. 2011. Impact of aerosol particles on cloud formation: Aircraft measurements in China [J]. Atmospheric Environment, 45(3): 665-672. doi: 10.1016/j.atmosenv.2010.10.025
  • 加载中
计量
  • 文章访问数:  936
  • HTML全文浏览量:  6
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-19

目录

    /

    返回文章
    返回