高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋层积云中的云滴谱宽度及其影响因子

朱磊 陆春松 高思楠 YUMSeongSoo

朱磊, 陆春松, 高思楠, YUMSeongSoo. 海洋层积云中的云滴谱宽度及其影响因子[J]. 大气科学, 2020, 44(3): 575-590. doi: 10.3878/j.issn.1006-9895.1905.19115
引用本文: 朱磊, 陆春松, 高思楠, YUMSeongSoo. 海洋层积云中的云滴谱宽度及其影响因子[J]. 大气科学, 2020, 44(3): 575-590. doi: 10.3878/j.issn.1006-9895.1905.19115
ZHU Lei, LU Chunsong, GAO Sinan, YUM Seong Soo. Spectral Width of Cloud Droplet Spectra and Its Impact Factors in Marine Stratocumulus[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 575-590. doi: 10.3878/j.issn.1006-9895.1905.19115
Citation: ZHU Lei, LU Chunsong, GAO Sinan, YUM Seong Soo. Spectral Width of Cloud Droplet Spectra and Its Impact Factors in Marine Stratocumulus[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 575-590. doi: 10.3878/j.issn.1006-9895.1905.19115

海洋层积云中的云滴谱宽度及其影响因子

doi: 10.3878/j.issn.1006-9895.1905.19115
基金项目: 国家重点研发计划项目2017YFA0604001,江苏省自然科学基金杰出青年基金项目BK20160041,国家自然科学基金项目41822504,青蓝工程R2018Q05,江苏省六大人才高峰2015-JY-011

Spectral Width of Cloud Droplet Spectra and Its Impact Factors in Marine Stratocumulus

  • 摘要: 云滴谱宽度对模式中云的光学厚度的参数化、气溶胶间接效应的评估以及降水形成过程的研究至关重要。本文利用美国POST(Physics of Stratocumulus Top)项目2008年7月19日的飞机观测资料,分析了微物理量和云滴谱的垂直分布及微物理过程。结果表明,该云系云滴谱宽度在云底附近较大,这是由低层核化过程导致的;中层凝结增长过程使得云滴谱宽度随高度增加逐渐减小;云顶附近夹卷混合过程导致云滴谱宽度增大。绝热云中垂直速度的增大会促进云凝结核的活化使云滴数浓度增大,促进凝结增长使云滴尺度增大、云滴谱宽度减小,云滴谱宽度与云滴数浓度、云滴尺度呈现负相关关系;云洞中受夹卷混合过程影响,垂直速度减小,云滴蒸发,云滴数浓度和云滴尺度减小、云滴谱宽度增大,且该效应随绝热程度减小而增强。建议云滴谱宽度的参数化将垂直速度、云滴数浓度、云滴尺度和绝热程度等考虑在内。
  • 图  1  2008年7月19日飞行轨迹(色标表示世界时时间)

    Figure  1.  The flight path of the aircraft on 19 July 2008 (color bar shows time in UTC)

    图  2  (a–g)分别为第3~9次垂直穿云过程中云滴谱离散度的垂直分布

    Figure  2.  Vertical distribution of relative dispersion of cloud droplet spectra. (a–g) Correspond to vertical legs 3–9, respectively

    图  3  第7次垂直穿云过程中(a)离散度[蓝色和红色点分别为采样云(非云洞)和云洞的含水量]、(b)云滴数浓度、(c)云滴平均半径、(d)含水量、(e)云滴体积平均半径、(f)云滴谱标准差的垂直分布

    Figure  3.  Vertical distribution of (a) relative dispersion [the blue and red dots represent liquid water content in sample clouds (excluding cloud holes) and in cloud holes, respectively], (b) cloud droplet number concentration, (c) cloud droplet mean radius, (d) liquid water content, (e) cloud droplet mean-volume radius, and (f) standard deviation of cloud droplet spectra along leg 7

    图  4  第7次垂直穿云过程中(a)垂直速度、(b)云滴谱的垂直分布(色标表示云滴数密度的自然对数)

    Figure  4.  Vertical distribution of (a) vertical velocity and (b) cloud droplet spectra (color bar shows the natural logarithm of the number density of cloud droplets) along leg 7

    图  5  第4次垂直穿云过程中(a)离散度 [蓝色和红色点分别为采样云(非云洞)和云洞的含水量]、(b)云滴数浓度、(c)云滴平均半径、(d)含水量、(e)云滴体积平均半径、(f)云滴谱标准差的垂直分布

    Figure  5.  Vertical distribution of (a) relative dispersion [the blue and red dots represent liquid water content in sample clouds (excluding cloud holes) and in cloud holes, respectively], (b) cloud droplet number concentration, (c) cloud droplet mean radius, (d) liquid water content, (e) cloud droplet mean-volume radius, and (f) standard deviation of cloud droplet spectra along leg 4

    图  6  第4次垂直穿云过程中(a)垂直速度、(b)云滴谱的垂直分布(色标表示云滴数密度的自然对数)

    Figure  6.  Vertical distribution of (a) vertical velocity and (b) cloud droplet spectra (color bar shows the natural logarithm of the number density of cloud droplets) along leg 4

    图  7  (a)第4、(b)7次垂直穿云过程中云底以上100 m内云滴数浓度(Nc)和气溶胶数浓度(Na)的相关关系

    Figure  7.  Correlation between cloud droplet number concentration (Nc) and aerosol number concentration (Na) within 100 m above the cloud base along (a) leg 4 and (b) leg 7

    图  8  (a)第4、(b)7次垂直穿云过程中云顶附近不同高度的云滴谱(图例中的高度为云底以上的高度)

    Figure  8.  Cloud droplet spectra at different heights near the cloud top along (a) leg 4 and (b) leg 7. Heights in the legends are the values above cloud base

    图  9  (a)第4、(b)7次垂直穿云过程中云滴数浓度(Nc,黑色点)和气溶胶数浓度(Na,蓝色点)的垂直分布

    Figure  9.  Vertical distribution of cloud droplet number concentration (Nc, black dots) and aerosol number concentration (Na, blue dots) along (a) leg 4 and (b) leg 7

    图  10  第7次垂直穿云过程绝热云和云洞内(a)云滴数浓度与垂直速度、(b)离散度与垂直速度、(c)离散度与云滴数浓度以及(d)离散度与体积平均半径之间的相关关系(蓝色点为绝热云,红色点为云洞,百分数表示绝热云或云洞内数据点占该次穿云云内总数据点的比例)

    Figure  10.  Correlations between (a) cloud droplet number concentration and vertical velocity, (b) relative dispersion and vertical velocity, (c) relative dispersion and cloud droplet number concentration, (d) relative dispersion and mean-volume radius in adiabatic clouds and cloud holes along leg 7. Blue dots represent adiabatic clouds, red dots represent cloud holes, and percentage represents the ratio of the number of samples in adiabatic clouds or cloud holes to that along the whole leg

    图  11  第7次垂直穿云过程中云洞内(a)云滴数浓度与绝热程度(L/La)、(b)离散度与绝热程度(L/La)之间的相关关系(LLa分别为观测到的和绝热的云中含水量,百分数表示云洞内数据点占该次穿云云内总数据点的比例)

    Figure  11.  Correlations between (a) cloud droplet number concentration and adiabatic fraction (L/La), and (b) relative dispersion and adiabatic fraction (L/La) in cloud holes along leg 7. L and La are observed and adiabatic cloud liquid water content, respectively. The percentage represents the ratio of the number of samples in cloud holes to that along the whole leg

    表  1  不同来源的层积云微物理量的平均值(括号内为相应变量的标准差)

    Table  1.   Average values of microphysical properties of stratocumulus from different sources (Figures in parentheses are the standard deviations of the corresponding properties)

    来源穿云序号云底—云顶/m云滴数浓度/cm−3含水量/g m−3平均半径/μm离散度标准差/μm
    POST20080719(海洋Sc)3226~478249.58(91.27)0.22(0.11)5.27(0.97)0.31(0.10)1.55(0.35)
    4254~478253.46(107.11)0.24(0.16)5.24(1.01)0.35(0.12)1.74(0.46)
    5215~477280.00(97.91)0.25(0.15)5.29(1.22)0.30(0.12)1.47(0.45)
    6197~457316.61(108.90)0.29(0.17)5.43(1.18)0.29(0.12)1.47(0.50)
    7134~409274.79(121.51)0.26(0.17)5.19(1.23)0.32(0.15)1.49(0.50)
    8179~433286.72(107.92)0.25(0.17)5.08(1.31)0.30(0.12)1.39(0.34)
    9152~417305.97(122.23)0.24(0.16)4.80(1.16)0.33(0.14)1.48(0.51)
    Lu et al., 2007(海洋Sc)Cloud 2315~555228(57)0.09(0.05)0.35(0.04)1.56(0.22)
    Cloud 5A222~667401(90)0.36(0.08)0.25(0.02)1.69(0.21)
    Cloud 8193~570118(32)0.37(0.08)0.28(0.05)1.91(0.39)
    Cloud 10300~68543(10)0.09(0.02)0.40(0.03)2.85(0.43)
    Cloud 13101~450136(48)0.13(0.08)0.33(0.05)2.21(0.31)
    Cloud 14A67~364183(31)0.37(0.03)0.33(0.02)2.14(0.26)
    Cloud 16100~366479(24)0.30(0.04)0.30(0.02)1.91(0.27)
    张正国等,2018(广西Sc)600~2500624.41.065.56
    Miles et al., 2000海洋云74(45)0.18(0.14)7.1(1.7)5.8(2.0)
    大陆云288(159)0.19(0.21)4.1(1.9)3.1(1.2)
    下载: 导出CSV

    表  2  垂直穿云过程中绝热云和云洞内微物理量平均值(表格中“|”前面为绝热云中平均值,“|”后面为云洞中平均值)

    Table  2.   Average values of microphysical properties in adiabatic clouds and cloud holes along each leg (the figures in front of the “|” represent the values in adiabatic clouds, and the figures after the “|” represent the values in cloud holes)

    垂直穿云序号云滴数浓度/cm−3含水量/g m−3平均半径/μm体积平均半径/μm离散度标准差/μm垂直速度/m s−1
    3308.03|203.780.30|0.175.64|5.336.02|5.850.26|0.321.42|1.680.19|−0.15
    4307.68|225.840.34|0.185.65|5.356.18|5.900.30|0.351.64|1.78−0.03|−0.17
    5346.73|230.090.34|0.195.81|5.266.09|5.890.23|0.341.28|1.680.43|0.14
    6348.87|308.570.34|0.255.59|5.456.01|5.870.26|0.271.40|1.450.09|0.03
    7331.21|276.800.36|0.235.85|5.156.28|5.630.26|0.311.42|1.47−0.06|−0.05
    8340.55|276.690.36|0.235.84|5.346.18|5.730.24|0.281.34|1.42−0.12|−0.13
    9370.60|293.030.35|0.195.58|4.736.02|5.250.26|0.351.40|1.580.16|0.03
    下载: 导出CSV

    表  3  不同垂直穿云过程中微物理量之间的相关系数 [Nc为云滴数浓度(单位:cm−3),w为垂直速度(单位:m s−1),d为离散度,X为绝热程度(L/LaLLa分别为观测到的和绝热的云中含水量);表中“Ncw”表示云滴数浓度和垂直速度的相关系数,其他表示方法相似;“*”表示该相关系数未通过95%的显著性检验]

    Table  3.   Correlation coefficients between microphysical properties along different legs. [Nc represents cloud droplet number concentration (cm−3), w represents vertical velocity (m s−1), d represents cloud droplet spectral width, and X represents the adiabatic fraction (L/La, L, and La are observed and adiabatic cloud liquid water content, respectively). “Ncw” represents the correlation coefficient between cloud droplet number concentration and vertical velocity. “*” indicates that the correlation failed the 95% significance test]

    垂直穿云序号相关系数(绝热云)相关系数(云洞)
    NcwdwdNcdrvNcwdwdNcdrvNcXdX
    30.33−0.07*−0.69−0.400.13−0.31−0.35−0.430.79−0.23
    40.43−0.39−0.75−0.550.20−0.30−0.45−0.490.76−0.46
    50.21−0.07*−0.61−0.390.46−0.36−0.78−0.370.66−0.73
    60.58−0.33−0.70−0.390.47−0.05*−0.52−0.230.68−0.66
    70.45−0.37−0.90−0.340.51−0.27−0.81−0.610.62−0.71
    80.28−0.36−0.46−0.590.37−0.59−0.63−0.610.65−0.74
    90.36−0.30−0.89−0.370.16−0.06*−0.68−0.440.66−0.62
    下载: 导出CSV
  • [1] 陈宝君, 李爱华, 吴林林, 等. 2016. 暖底对流云催化的微物理和动力效应的数值模拟 [J]. 大气科学, 40(2): 271-288
    [2] Chen Baojun, Li Aihua, Wu Linlin, et al. 2016. Modeling the microphysical and dynamical effects of silver iodide seeding of warm-based convective clouds [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 271-288. doi: 10.3878/j.issn.1006-9895.1503.14271
    [3] Chen Jingyi, Liu Yangang, Zhang Minghua, et al. 2016. New understanding and quantification of the regime dependence of aerosol–cloud interaction for studying aerosol indirect effects [J]. Geophys. Res. Lett., 43(4): 1780-1787. doi: 10.1002/2016gl067683
    [4] Chen Jingyi, Liu Yangang, Zhang Minghua, et al. 2018. Height dependency of aerosol–cloud interaction regimes [J]. J. Geophys. Res. Atmos., 123(1): 491-506. doi: 10.1002/2017jd027431
    [5] 戴进, 余兴, 刘贵华, 等. 2011. 青藏高原雷暴弱降水云微物理特征的卫星反演分析 [J]. 高原气象, 30(2): 288-298
    [6] Dai Jin, Yu Xing, Liu Guihua, et al. 2011. Satellite retrieval analysis on microphysical property of thunderstorm with light precipitation over the Qinghai-Xizang Plateau [J]. Plateau Meteorology (in Chinese), 30(2): 288-298.
    [7] Deng Wei, Sun Jiming, Lei Hengchi. 2018. Numerical investigations for the impacts of triple-moment and double-moment condensation schemes on the warm rain formation [J]. Atmospheric and Oceanic Science Letters, 11(6): 472-480. doi: 10.1080/16742834.2018.1527176
    [8] 段婧, 毛节泰. 2008. 气溶胶与云相互作用的研究进展 [J]. 地球科学进展, 23(3): 252-261
    [9] Duan Jing, Mao Jietai. 2008. Progress in researches on interaction between aerosol and cloud [J]. Advances in Earth Science (in Chinese), 23(3): 252-261. doi: 10.3321/j.issn:1001-8166.2008.03.005
    [10] Gerber H, Frick G, Malinowski S P, et al. 2005. Holes and entrainment in stratocumulus [J]. J. Atmos. Sci., 62(2): 443-459. doi: 10.1175/jas-3399.1
    [11] Gerber H E, Frick G M, Jensen J B, et al. 2008. Entrainment, mixing, and microphysics in trade-wind cumulus [J]. J. Meteor. Soc. Japan, 86A: 87-106. doi: 10.2151/jmsj.86a.87
    [12] 郭学良, 付丹红, 胡朝霞. 2013. 云降水物理与人工影响天气研究进展(2008~2012年) [J]. 大气科学, 37(2): 351-363
    [13] Guo Xueliang, Fu Danhong, Hu Zhaoxia. 2013. Progress in cloud physics, precipitation, and weather modification during 2008–2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 351-363. doi: 10.3878/j.issn.1006-9895.2012.12321
    [14] 胡朝霞, 雷恒池, 郭学良, 等. 2007. 降水性层状云系结构和降水过程的观测个例与模拟研究 [J]. 大气科学, 31(3): 425-439
    [15] Hu Zhaoxia, Lei Hengchi, Guo Xueliang, et al. 2007. Studies of the structure of a stratiform cloud and the physical processes of precipitation formation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(3): 425-439. doi: 10.3878/j.issn.1006-9895.2007.03.06
    [16] Hudson J G, Yum S S. 1997. Droplet spectral broadening in marine stratus [J]. J. Atmos. Sci., 54(22): 2642-2654. doi: 10.1175/1520-0469(1997)054<2642:dsbims>2.0.co;2
    [17] Lasher-Trapp S G, Cooper W A, Blyth A M. 2005. Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud [J]. Quart. J. Roy. Meteoro. Soc., 131(605): 195-220. doi: 10.1256/qj.03.199
    [18] 雷恒池, 洪延超, 赵震, 等. 2008. 近年来云降水物理和人工影响天气研究进展 [J]. 大气科学, 32(4): 967-974
    [19] Lei Hengchi, Hong Yanchao Zhao Zhen, et al. 2008. Advances in cloud and precipitation physics and weather modification in recent years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 967-974. doi: 10.3878/j.issn.1006-9895.2008.04.21
    [20] Li Yunying, Yu Rucong, Xu Youping, et al. 2004. Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations [J]. J. Meteor. Soc. Japan, 82(2): 761-773. doi: 10.2151/jmsj.2004.761
    [21] 刘屹岷, 燕亚菲, 吕建华, 等. 2018. 基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展 [J]. 大气科学, 42(4): 847-858
    [22] Liu Yimin, Yan Yafei, Lü Jianhua, et al. 2018. Review of current investigations of cloud, radiation and rainfall over the Tibetan Plateau with the CloudSat/CALIPSO dataset [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 847-858. doi: 10.3878/j.issn.1006-9895.1805.17281
    [23] Liu Yangang, Daum P H. 2000. Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius [J]. Geophys. Res. Lett., 27(13): 1903-1906. doi: 10.1029/1999gl011011
    [24] Liu Yangang, Daum P H. 2002. Indirect warming effect from dispersion forcing [J]. Nature, 419(6907): 580-581. doi: 10.1038/419580a
    [25] Liu Yangang, Daum P H, Yum S S. 2006. Analytical expression for the relative dispersion of the cloud droplet size distribution [J]. Geophys. Res. Lett., 33(2): L02810. doi: 10.1029/2005gl024052
    [26] Liu Yangang, Daum P H, Guo Huan, et al. 2008. Dispersion bias, dispersion effect, and the aerosol–cloud conundrum [J]. Environ. Res. Lett., 3(4): 045021. doi: 10.1088/1748-9326/3/4/045021
    [27] Liu Yu, Lu Chunsong, Li Weiliang. 2017. Skewness of cloud droplet spectrum and an improved estimation for its relative dispersion [J]. Meteoro. Atmos. Phys., 129(1): 47-56. doi: 10.1007/s00703-016-0458-9
    [28] Lu Chunsong, Liu Yangang, Niu Shengjie. 2011. Examination of turbulent entrainment-mixing mechanisms using a combined approach [J]. J. Geophys. Res., 116(D20): D20207. doi: 10.1029/2011jd015944
    [29] Lu Chunsong, Liu Yangang, Niu Shengjie, et al. 2012. Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects [J]. Geophys. Res. Lett., 39(21): L21808. doi: 10.1029/2012gl053599
    [30] Lu Chunsong, Liu Yangang, Niu Shengjie, et al. 2018. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence: An overview [J]. Atmospheric and Oceanic Science Letters, 11(2): 123-135. doi: 10.1080/16742834.2018.1410057
    [31] Lu Miaoling, Conant W C, Jonsson H H, et al. 2007. The marine Stratus/Stratocumulus experiment (MASE): Aerosol–cloud relationships in marine stratocumulus [J]. J. Geophys. Res., 112(D10): D10209. doi: 10.1029/2006jd007985
    [32] Ma Jianzhong, Chen Yue, Wang Wei, et al. 2010. Strong air pollution causes widespread haze-clouds over China [J]. J. Geophys. Res., 115(D18): D18204. doi: 10.1029/2009jd013065
    [33] Martin G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds [J]. J. Atmos. Sci., 51(13): 1823-1842. doi: 10.1175/1520-0469(1994)051<1823:tmapoe>2.0.co;2
    [34] Martins J A, Silva Dias M A F. 2009. The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region [J]. Environ. Res. Lett., 4(1): 015002. doi: 10.1088/1748-9326/4/1/015002
    [35] Miles N L, Verlinde J, Clothiaux E E. 2000. Cloud droplet size distributions in low-level stratiform clouds [J]. J. Atmos. Sci., 57(2): 295-311. doi: 10.1175/1520-0469(2000)057<0295:cdsdil>2.0.co;2
    [36] Pawlowska H, Grabowski W W, Brenguier J L. 2006. Observations of the width of cloud droplet spectra in stratocumulus [J]. Geophys. Res. Lett., 33(19): L19810. doi: 10.1029/2006gl026841
    [37] Peng Yiran, Lohmann U. 2003. Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect [J]. Geophys. Res. Lett., 30(10): 1507. doi: 10.1029/2003gl017192
    [38] Peng Yiran, Lohmann U, Leaitch R, et al. 2007. An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds [J]. J. Geophys. Res., 112(D11): D11117. doi: 10.1029/2006jd007401
    [39] Rogers R R, Yau M K. 1996. A Short Course in Cloud Physics [M]. Elsev?略汲氬攠琲椹渳??椮渼??栾楒湯整獳整???ㄠ???????????摮潧楡?????????挠獓扥?????????ㄠ?扦爠?he first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration [J]. J. Climate, 16(21): 3476-3481. doi: 10.1175/1520-0442(2003)016<3476:sotfia>2.0.co;2
    [40] Rotstayn L D, Liu Yangang. 2009. Cloud droplet spectral dispersion and the indirect aerosol effect: Comparison of two treatments in a GCM [J]. Geophys. Res. Lett., 36(10): L10801. doi: 10.1029/2009gl038216
    [41] Salby M L. 1996. Fundamentals of Atmospheric Physics [M]. Elsevier, 627pp.
    [42] 石广玉, 王标, 张华, 等. 2008. 大气气溶胶的辐射与气候效应 [J]. 大气科学, 32(4): 826-840
    [43] Shi Guangyu, Wang Biao, Zhang Hua, et al. 2008. The radiative and climatic effects of atmospheric aerosols [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 826-840. doi: 10.3878/j.issn.1006-9895.2008.04.11
    [44] 唐洁, 郭学良, 常祎. 2018. 青藏高原那曲地区夏季一次对流云降水过程的云微物理及区域水分收支特征 [J]. 大气科学, 42(6): 1327-1343
    [45] Tang Jie, Guo Xueliang, Chang Yi. 2018. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1327-1343. doi: 10.3878/j.issn.1006-9895.1801.17202
    [46] Wallace J M, Hobbs P V. 2006. Atmospheric Science: An Introductory Survey [M]. Elsevier, 483pp.
    [47] 汪宏七, 赵高祥. 1994. 云和辐射(I): 云气侯学和云的辐射作用 [J]. 大气科学, 18(S1): 910-932
    [48] Wang Hongqi, Zhao Gaoxiang. 1994. Cloud and radiation—I: Cloud climatology and radiative effects of clouds [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18(S1): 910-932. doi: 10.3878/j.issn.1006-9895.1994.z1.15
    [49] Wang Jian, Daum P H, Yum S S, et al. 2009. Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment [J]. J. Geophys. Res., 114(D18): D18210. doi: 10.1029/2008jd011035
    [50] Wang Yuan, Niu Shengjie, Lu Chunsong, et al. 2019. An observational study on cloud spectral width in North China [J]. Atmosphere, 10(3): 109. doi: 10.3390/atmos10030109
    [51] Wood R. 2000. Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds [J]. Quart. J. Roy. Meteor. Soc., 126(570): 3309-3324. doi: 10.1002/qj.49712657015
    [52] 肖辉, 徐华英, 黄美元. 1988. 积云中云滴谱形成的数值模拟研究(一)——盐核谱和浓度的作用 [J]. 大气科学, 12(2): 121-130
    [53] Xiao Hui, Xu Huaying, Huang Meiyuan. 1988. The study of numerical simulation on the formation of the cloud droplet spectra in cumulus clouds—Part I: The roles of the spectra and concentrations of salt nuclei [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 12(2): 121-130. doi: 10.3878/j.issn.1006-9895.1988.03.11
    [54] 解小宁, 王昭生, 王红丽, 等. 2016. 云微物理特性及云滴有效半径参数化: 一次降水层状云的飞机观测资料结果 [J]. 地球环境学报, 7(1): 12-18
    [55] Xie Xiaoning, Wang Zhaosheng, Wang Hongli, et al. 2016. Cloud microphysical properties and parameterization of cloud droplet effective radius from aircraft measurements: Aircraft observational results from a stratiform precipitation cloud [J]. Journal of Earth Environment (in Chinese), 7(1): 12-18. doi: 10.7515/JEE201601002
    [56] Xie Xiaoning, Liu Xiaodong, Peng Yiran, et al. 2013. Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion [J]. Tellus B: Chemical and Physical Meteorology, 65(1): 19054. doi: 10.3402/tellusb.v65i0.19054
    [57] Xie Xiaoning, Zhang He, Liu Xiaodong, et al. 2017. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: Impacts on aerosol indirect effects [J]. Atmos. Chem. Phys., 17(9): 5877-5892. doi: 10.5194/acp-17-5877-2017
    [58] 杨军, 陈宝君, 银燕. 2011. 云降水物理学 [M]. 北京: 气象出版社, 364pp.
    [59] Yang Jun, Chen Baojun, Yin Yan. 2011. Physics of Clouds and Precipitation [M]. Beijing: China Meteorological Press (in Chinese), 364pp.
    [60] 杨洁帆, 雷恒池, 胡朝霞. 2010. 一次层状云降水过程微物理机制的数值模拟研究 [J]. 大气科学, 34(2): 275-289
    [61] Yang Jiefan, Lei Hengchi, Hu Zhaoxia. 2010. Simulation of the stratiform cloud precipitation microphysical mechanism with the numerical model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(2): 275-289. doi: 10.3878/j.issn.1006-9895.2010.02.04
    [62] 岳治国, 余兴, 刘贵华, 等. 2018. NPP/VⅡRS卫星反演青藏高原夏季对流云微物理特征 [J]. 气象学报, 76(6): 968-982
    [63] Yue Zhiguo, Yu Xing, Liu Guihua, et al. 2018. NPP/VⅡRS satellite retrieval of summer convective cloud microphysical properties over the Tibetan Plateau [J]. Acta Meteorologica Sinica (in Chinese), 76(6): 968-982. doi: 10.11676/qxxb2018.051
    [64] Yum S S, Hudson J G. 2005. Adiabatic predictions and observations of cloud droplet spectral broadness [J]. Atmos. Res., 73(3-4): 203-223. doi: 10.1016/j.atmosres.2004.10.006
    [65] 张华, 杨冰韵, 彭杰, 等. 2015. 东亚地区云微物理量分布特征的CloudSat卫星观测研究 [J]. 大气科学, 39(2): 235-248
    [66] Zhang Hua, Yang Bingyun, Peng Jie, et al. 2015. The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 235-248. doi: 10.3878/j.issn.1006-9895.1408.13313
    [67] 张正国, 卢广献, 汤达章, 等. 2018. 广西秋季层状云微物理特征分析 [J]. 气象科技, 46(3): 545-555
    [68] Zhang Zhengguo, Lu Guangxian, Tang Dazhang, et al. 2018. Microphysical characteristics of stratiform clouds in autumn in Guangxi [J]. Meteorological Science and Technology (in Chinese), 46(3): 545-555. doi: 10.19517/j.1671-6345.20170223
    [69] 赵春生, 石坂隆. 2004. 层积云覆盖的海洋边界层云详细微物理过程的数值模拟 [J]. 气象学报, 62(1): 87-95
    [70] Zhao Chunsheng, Yutaka Ishizaka. 2004. Numerical study on cloud microphysics of stratocumulus-topped marine boundary [J]. Acta Meteorologica Sinica (in Chinese), 62(1): 87-95. doi: 10.3321/j.issn:0577-6619.2004.01.010
    [71] Zhao Chunsheng, Tie Xuexi, Brasseur G, et al. 2006. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing [J]. Geophys. Res. Lett., 33(16): L16809. doi: 10.1029/2006gl026653
    [72] Zhao Chuanfeng, Zhao Lijun, Dong Xiaobo. 2019. A case study of stratus cloud properties using in situ aircraft observations over Huanghua, China [J]. Atmosphere, 10(1): 19. doi: 10.3390/atmos10010019
    [73] 周秀骥, 顾震潮. 1963. 关于云霧微結构和降水过程理論的若干問题 [J]. 科学通报, 14(6): 1-7
    [74] Zhou Xiuji, Gu Zhenchao. 1963. Several questions on cloud/fog microphysics and precipitation [J]. Science
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  2
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24

目录

    /

    返回文章
    返回