高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

春季欧亚大陆积雪主模态及其与北大西洋海温的关系

刘晨 张杰 徐玮平

刘晨, 张杰, 徐玮平. 2020. 春季欧亚大陆积雪主模态及其与北大西洋海温的关系[J]. 大气科学, 44(4): 792−807 doi:  10.3878/j.issn.1006-9895.1911.19140
引用本文: 刘晨, 张杰, 徐玮平. 2020. 春季欧亚大陆积雪主模态及其与北大西洋海温的关系[J]. 大气科学, 44(4): 792−807 doi:  10.3878/j.issn.1006-9895.1911.19140
LIU Chen, ZHANG Jie, XU Weiping. 2020. Main Modes of Spring Snow Depth in Eurasia and Their Relationship with the North Atlantic SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 792−807 doi:  10.3878/j.issn.1006-9895.1911.19140
Citation: LIU Chen, ZHANG Jie, XU Weiping. 2020. Main Modes of Spring Snow Depth in Eurasia and Their Relationship with the North Atlantic SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 792−807 doi:  10.3878/j.issn.1006-9895.1911.19140

春季欧亚大陆积雪主模态及其与北大西洋海温的关系

doi: 10.3878/j.issn.1006-9895.1911.19140
基金项目: 国家重点研发计划项目2018YFC1507101,国家自然科学基金重点项目41975083
详细信息
    作者简介:

    刘晨,女,1994年出生,硕士研究生,主要从事极端气候与气候模拟的研究。E-mail: 849464643@qq.com

    通讯作者:

    张杰,E-mail: zhangj@nuist.edu.cn

  • 中图分类号: P461

Main Modes of Spring Snow Depth in Eurasia and Their Relationship with the North Atlantic SST

Funds: National Key Research and Development Program of China (Grant 2018YFC1507101), Key Program of the National Natural Science Foundation of China (Grant 41975083)
  • 摘要: 本文利用日本第二次全球大气再分析项目(JRA-55)提供的逐日积雪深度数据、欧洲中期天气预报中心(ECMWF)提供的全球再分析数据及Hadley海温数据分析了春季欧亚大陆积雪异常模态及其与北大西洋海温的遥相关关系,并通过模式模拟分析验证。结果表明:春季欧亚大陆雪深前两种模态差异显著,分别表现为东、西区域同向变化及反向变化两种非对称形态。其中,同期北大西洋“三极子型”海温模态与“马鞍型”海温模态分别与雪深第一、第二模态具有显著相关关系,这两种海温模态下对应的北半球中高纬波动作用通量分别呈丝绸之路(SRP)型和欧亚波列(EU)型两种传播特征,对中高纬西风气流的位置、强度产生了不同影响,进而对欧亚雪深分布产生遥相关作用。通过局地多尺度能量涡度分析法(Localized Multiscale Energy and Vorticity Analysis,简称MSE-VA)表明,北大西洋源区有自下向上的动能传输,另外,西风急流出口的平均动能转化增加,使得高层动能累积并向外辐散,从而对下游产生遥相关作用。通过CAM5.1模式模拟研究了北大西洋“三极子型”和“马鞍型”两种海温模态下的波作用通量传播特征,结果较好地验证了来自北大西洋的波动作用通量传播呈“SRP”型和“EU”型两种特征,对应的降雪分布表明两种模态下气候场要素的变化与对应雪深模态的分布特征一致。
  • 图  1  欧亚大陆3月雪深EOF(a、b)第一、(c、d)第二模态空间分布(左列)及其对应的标准化时间系数序列(右列),左列图框中区域为本研究关键区域,右列灰色曲线为十年滑动平均

    Figure  1.  (a, b) The first and (c, d) second EOF modes (left column) and its corresponding PCs (principal component time series; right column) of the snow depth (SD) anomaly over Eurasia for March. Rectangular boxes in (a, c) denote the domains we focus on, whereas, the gray curves (right panel) indicate 10-year running means

    图  2  1979~2015年欧亚大陆3月雪深序列各 IMF 分量及趋势项(上)以及各IMF分量的显著性检验(下)

    Figure  2.  IMF (Intrinsic Mode Function) components and trend items of Eurasia SD series (top) and significance tests of IMF components (bottom) in March from1979 to 2015

    图  3  基于EEMD分解的欧亚大陆3月雪深序列年际与年代际变化

    Figure  3.  Inter-annual and -decadal variations of March snow depth anomaly series in Eurasia based on EEMD decomposition

    图  4  3月积雪深度(a)PC1和(b)PC2对500 hPa位势高度距平场(单位: gpm)进行回归得到的回归系数,打点区域表示通过95%的显著性检验

    Figure  4.  Regression coefficients of geopotential height anomaly field (units: gpm) at 500 hPa against the standardized (a) PC1 and (b) PC2 of the first and second EOF modes for March snow depth (stippling denotes significance at the 0.05 level)

    图  5  3月积雪深度(a)PC1和(b)PC2回归得到的300 hPa 波作用矢量(箭头,单位:m2 s−2)与波通量散度(阴影,单位:m s−2)分布,红色实线表示回归得到的西风急流(从北到南分别为15、20、25 m s−1),框中区域为本研究的雪深关键区域

    Figure  5.  Regression of wave activity fluxes (vectors, units: m2 s−2) and their divergence (shadow, units: m s−2) at 300 hPa against the standardized (a) PC1 and (b) PC2 of the first and second EOF modes for March snow depth. The solid red lines represent the regression of the westerly jet (15, 20, 25 m s−1 from north to south) against PC1 and PC2, rectangular boxes denote the SD domains we focus on

    图  6  3月积雪深度(a)PC1和(b)PC2对大西洋海表面温度距平场(单位:°C)进行回归得到的回归系数,打点区域表示通过95%的信度检验

    Figure  6.  Regression coefficients of SST anomaly field (units: °C) against the standardized (a) PC1 and (b) PC2 of the first and second EOF modes for March snow depth (stippling denotes significance at the 0.05 level)

    图  7  北大西洋3月海表面温度EOF(a、b)第一、(c、d)第二模态空间分布(左列)及其对应的标准化时间系数序列(右列)。左列图中黑色虚线为37年平均西风急流,红色实线为各海温PC回归得到的西风急流(从北到南依次为15、20、25 m s−1)。右列图中灰色曲线为十年滑动平均,橙色虚线为3月积雪深度时间序列

    Figure  7.  The (a, b) first and (c, d) second EOF modes and corresponding PCs of SST over the North Atlantic in March. The black dotted lines in the left panel are the 37-year average westerly jet, whereas, the red solid lines denote their regression (15, 20, 25 m s−1 from north to south) against the PCs; the gray curves in the right panel indicate 10 year running means. The dotted orange line is the SD time series

    图  8  3月欧亚雪深模态(a)PC1和(b)PC2对北半球动能(单位:m2 s−2)的回归系数。打点区域表示通过95%的信度检验

    Figure  8.  Regression coefficients of the Northern Hemisphere kinetic energy (KE, units: m2 s−2) against the standardized (a) PC1 and (b) PC2 of the first and second EOF modes for the Eurasia SD anomaly field in March (stippling denotes significance at the 0.05 level)

    图  9  海温PC1对应的动能源区(a)高层(500~300 hPa)、(b)中层(700~500 hPa)和(c)低层(1000~700 hPa)动能收支各项,均经过标准化处理

    Figure  9.  KE budget terms in the (a) upper (500–300 hPa), (b) middle (700–500 hPa), and (c) lower (1000–700 hPa) layers of the KE corresponding to SST PC1 (KE budget terms have been standardized)

    图  10  图9,但为PC2

    Figure  10.  Same as Fig. 9, but for PC2

    图  11  模式模拟3月300 hPa水平波作用通量(箭头)及其散度(阴影,单位:m s−2):(a)敏感性试验1;(b)敏感性试验2。细线方框为雪深关键区,红色箭头表示水平波作用通量传播方向

    Figure  11.  Wave activity fluxes (vectors) and their divergence (shadow, units: m s−2) at 300 hPa simulated in (a) EXP1 (sensitivity expt1) and (b) EXP2 (sensitivity expt2). Thin rectangles represent key regions, the red arrow indicates the direction of the horizontal wave activity fluxes

    图  12  3月平均的敏感性试验1(左列)、敏感性试验2(右列)与控制试验的(a、b)地表温度(单位:K)、(c、d)降水场(单位:kg m−2)和(e、f)雪水当量雪深(单位:m)的差值场

    Figure  12.  Differences of the averaged (a, b) surface temperature (units: K), (c, d) precipitation (units: kg m−2), and (e, f) snow water equivalent (units: m) among experitment1 and control test (left column), experiment2 and control test (right column) in March

    表  1  欧亚大陆3月雪深序列各分量的方差贡献率

    Table  1.   Variance contribution rate of each component of Eurasia SD series in March

    IMF分量IMF1IMF2IMF3IMF4RES
    周期3 a6 a18.5 a24 a
    贡献率58.85%16.68%6.04%1.27%17.15%
    下载: 导出CSV

    表  2  关键区雪深序列与欧亚雪深的两个主模态对应时间系数PC1、PC2的相关

    Table  2.   The correlation between the snow depth sequence in the key area and the corresponding time coefficients PC1 and PC2 of the two main modes of Eurasian snow depth

    与关键区雪深序列的相关系数
    PC1PC2
    西部区域−0.7743−0.8152
    东部区域−0.50310.7714
    整个欧洲−0.68730.0453
    注:加粗字体表示通过显著性检验
    下载: 导出CSV
  • [1] Bai R H. 2001. Relation between sea surface temperature anomaly in the Atlantic and summer precipitation over the Northeast China [J]. Marine Forecasts, 18(S1): 50−57. doi: 10.3969/j.issn.1003-0239.2001.z1.005
    [2] Bamzai A S, Shukla J. 1999. Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study [J]. J. Climate, 12(10): 3117−3132. doi:10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2
    [3] Bamzai A S. 2003. Relationship between snow cover variability and Arctic Oscillation index on a hierarchy of time scales [J]. Int. J. Climatol., 23(2): 131−142. doi: 10.1002/joc.854
    [4] Barnett T P, Dümenil L, Schlese U, et al. 1988. The effect of Eurasian snow cover on global climate [J]. Science, 239(4839): 504−507. doi: 10.1126/science.239.4839.504
    [5] Barnett T P, Dümenil L, Schlese U, et al. 1989. The effect of Eurasian snow cover on regional and global climate variations [J]. J. Atmos. Sci., 46(5): 661−686. doi:10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
    [6] Branstator G. 2002. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation [J]. J. Climate, 15(14): 1893−1910. doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2
    [7] Chen G S, Huang R H, Zhou L T. 2013. Baroclinic instability of the Silk Road pattern induced by thermal damping [J]. J. Atmos. Sci., 70(9): 2875−2893. doi: 10.1175/JAS-D-12-0326.1
    [8] Chervin M, Kutzbach J E, Houghton D D, et al. 1980. Response of the NCAR general circulation model to prescribed changes in ocean surface temperature. Part Ⅱ: Midlatitude and subtropical changes [J]. J. Atmos. Sci., 37(2): 308−332. doi:10.1175/1520-0469(1980)037<0308:ROTNGC>2.0.CO;2
    [9] Clark M P, Serreze M C, Robinson D A. 1999. Atmospheric controls on Eurasian snow extent [J]. Int. J. Climatol., 19(1): 27−40. doi:10.1002/(SICI)1097-0088(199901)19:1<27::AID-JOC346>3.0.CO;2-N
    [10] Clark M P, Serreze M C. 2000. Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean [J]. J. Climate, 13(20): 3700−3710. doi:10.1175/1520-0442(2000)013<3700:EOVIEA>2.0.CO;2
    [11] Cohen J, Entekhabi D. 1999. Eurasian snow cover variability and Northern Hemisphere climate predictability [J]. Geophys. Res. Lett., 26(3): 345−348. doi: 10.1029/1998GL900321
    [12] Déry S J, Brown R D. 2007. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback [J]. Geophys. Res. Lett., 34(22): L22504. doi: 10.1029/2007gl031474
    [13] Enomoto T. 2004. Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet [J]. J. Meteor. Soc. Japan, 82(4): 1019−1034. doi: 10.2151/jmsj.2004.1019
    [14] Gong G, Entekhabi D, Cohen J. 2002. A large-ensemble model study of the wintertime AO-NAO and the role of interannual snow perturbations [J]. J. Climate, 15(23): 3488−3499. doi:10.1175/1520-0442(2002)015<3488:ALEMSO>2.0.CO;2
    [15] Groisman P Y, Karl T R, Knight R W. 1994a. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures [J]. Science, 263(5144): 198−200. doi: 10.1126/science.263.5144.198
    [16] Groisman P Y, Karl T R, Knight R W, et al. 1994b. Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere [J]. J. Climate, 7(11): 1633−1656. doi:10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO;2
    [17] Han T T, Chen H P, Hao X, et al. 2018. Recent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian Oceans [J]. Climate Dyn., 50(3-4): 1413−1424. doi: 10.1007/s00382-017-3694-x
    [18] Henderson G R, Leathers D J. 2010. European snow cover extent variability and associations with atmospheric forcings [J]. Int. J. Climatol., 30(10): 1440−1451. doi: 10.1002/joc.1990
    [19] Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing [J]. J. Atmos. Sci., 38(6): 1179−1196. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    [20] Hsiung J. 1985. Estimates of global oceanic meridional heat transport [J]. J. Phys. Oceanogr., 15(11): 1405−1413. doi:10.1175/1520-0485(1985)015<1405:EOGOMH>2.0.CO;2
    [21] Hsu P C, Tsou C H, Hsu H H, et al. 2009. Eddy energy along the tropical storm track in association with ENSO [J]. J. Meteor. Soc. Japan, 87(4): 687−704. doi: 10.2151/jmsj.87.687
    [22] 黄晓璐, 徐海明, 邓洁淳. 2015. 冬季中国近海海表温度的长期升高及其对中国降水的影响 [J]. 气象学报, 73(3): 505−514. doi:  10.11676/qxxb2015.038

    Huang Xiaolu, Xu Haiming, Deng Jiechun. 2015. Long-term rising of SST over the marginal seas of China in winter and its impact on precipitation in China [J]. Acta Meteor. Sinica (in Chinese), 73(3): 505−514. doi: 10.11676/qxxb2015.038
    [23] Hurrell J W. 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation [J]. Science, 269(5224): 676−679. doi: 10.1126/science.269.5224.676
    [24] Hurrell J W, Kushnir Y, Ottersen G, et al. The North Atlantic Oscillation: Climatic Significance and Environmental Impact[M], 2013, 84(8): 73-73.
    [25] Iijima Y, Masuda K, Ohata T. 2007. Snow disappearance in eastern Siberia and its relationship to atmospheric influences [J]. Int. J. Climatol., 27(2): 169−177. doi: 10.1002/joc.1382
    [26] Kim Y, Kim K Y, Kim B M. 2013. Physical mechanisms of European winter snow cover variability and its relationship to the NAO [J]. Climate Dyn., 40(7-8): 1657−1669. doi: 10.1007/s00382-012-1365-5
    [27] Krenke A N, Kitaev L M, Razuvaev V N, et al. 2001. Relationships between snow cover over the former USSR, SOI and Indian monsoon [J]. Data of Glaciological Studies (in Russian), 91: 27−32.
    [28] Lau K H, Lau N C. 1992. The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances [J]. Mon. Wea. Rev., 120(11): 2523−2539. doi:10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2
    [29] 李天宇, 朱伟军, 马阳, 等. 2017. 冬季北太平洋风暴轴和北大西洋风暴轴的协同变化及其与同期海气系统的空间耦合关系 [J]. 大气科学, 41(5): 1059−1075. doi:  10.3878/j.issn.1006-9895.1701.16255

    Li Tianyu, Zhu Weijun, Ma Yang, et al. 2017. Concurrent variations of northern Atlantic and Pacific storm tracks and their relationship to the coupled pattern of atmosphere-ocean system during winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1059−1075. doi: 10.3878/j.issn.1006-9895.1701.16255
    [30] Liang X S. 2016. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres [J]. J. Atmos. Sci., 73(11): 4439−4468. doi: 10.1175/JAS-D-16-0131.1
    [31] Liang X S, Robinson A R. 2005. Localized multiscale energy and vorticity analysis: I. Fundamentals [J]. Dyn. Atmos. Oceans, 38(3-4): 195−230. doi: 10.1016/j.dynatmoce.2004.12.004
    [32] Liang X S, Anderson D G M. 2007. Multiscale window transform [J]. Multiscale Model. Simul., 6(2): 437−467. doi: 10.1137/06066895X
    [33] Liu Q Y, Wen N, Yu Y Q. 2006. The role of the Kuroshio in the winter North Pacific ocean-atmosphere interaction: Comparison of a coupled model and observations [J]. Adv. Atmos. Sci., 23(2): 181−189. doi: 10.1007/s00376-006-0181-4
    [34] 卢慧超, 梁湘三, 容逸能. 2017. 基于局地多尺度能量涡度分析法(MS-EVA)的北半球夏季西太平洋MJO动能分析 [J]. 大气科学学报, 40(2): 224−232. doi:  10.13878/j.cnki.dqkxxb.20151214002

    Lu Huichao, Liang Xiangsan, Rong Yineng. 2017. An energetic study of the boreal summer western Pacific MJO with the localized multi-scale energy and vorticity analysis (MS-EVA) [J]. Atmos. Sci. (in Chinese), 40(2): 224−232. doi: 10.13878/j.cnki.dqkxxb.20151214002
    [35] Maloney E D, Hartmann D L. 2001. The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations [J]. J. Atmos. Sci., 58(17): 2545−2558. doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2
    [36] Maloney E D, Dickinson M J. 2003. The intra-seasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances [J]. J. Atmos. Sci., 60(17): 2153−2168. doi:10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2
    [37] Matsuo K, Heki K. 2012. Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE [J]. Geophys. J. Int., 190(3): 1495−1506. doi: 10.1111/j.1365-246X.2012.05588.x
    [38] Neale R B, Chen C C, Gettelman A, et al. 2010. Description of the NCAR community atmosphere model (CAM5.0) [R]. NCAR Technical Note NCAR/TN-486+STR.
    [39] Petoukhov V, Petri S, Rahmstorf S, et al. 2016. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events [J]. Proc. Natl. Acad. Sci. USA, 113(25): 6862−6867. doi: 10.1073/pnas.1606300113
    [40] Pozo-Vázquez D, Esteban-Parra M J, Rodrigo F S, eta l. 2001. A study of NAO variability and its possible non-linear influences on European surface temperature [J]. Climate Dyn., 17(9): 701−715. doi: 10.1007/s003820000137
    [41] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi: 10.1029/2002jd002670
    [42] 任雪娟, 张耀存. 2012. 冬季200 hPa西太平洋急流异常与海表加热和大气瞬变扰动的关系探讨 [J]. 气象学报, 65(4): 550−560. doi:  10.11676/qxxb2007.051

    Ren Xuejuan, Zhang Yaocun. 2012. Association of winter western Pacific jet stream anomalies at 200 hPa with ocean surface heating and atmospheric transient eddies [J]. Acta Meteor. Sinica (in Chinese), 65(4): 550−560. doi: 10.11676/qxxb2007.051
    [43] Rogers J C, Van Loon H. 1979. The seesaw in winter temperatures between Greenland and northern Europe. Part Ⅱ: Some oceanic and atmospheric effects in middle and high latitudes [J]. Mon. Wea. Rev., 107(5): 509−519. doi:10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2
    [44] Seager R, Kushnir Y, Nakamura J, et al. 2010. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10 [J]. Geophys. Res. Lett., 37(14): L14703. doi: 10.1029/2010GL043830
    [45] Simmons A J, Wallace J M, Branstator G W. 1983. Barotropic wave propagation and instability, and atmospheric teleconnection patterns [J]. J. Atmos. Sci., 40(6): 1363−1392. doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
    [46] Takaya K, Nakamura H. 1997. A formulation of a wave‐activity flux for stationary Rossby waves on a zonally varying basic flow [J]. Geophys. Res. Lett., 24(23): 2985−2988. doi: 10.1029/97GL03094
    [47] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [48] 谭言科, 何金海, 祝从文. 1999. 欧亚冬季雪盖对北半球夏季大气环流的影响及其与东亚太平洋型遥相关的可能联系 [J]. 大气科学, 23(2): 152−160. doi:  10.3878/j.issn.1006-9895.1999.02.03

    Tan Yanke, He Jinhai, Zhu Congwen. 1999. Impact of Eurasian winter snow cover on the Northern Hemisphere summer circulation and its possible relation to East Asia Pacific teleconnection pattern [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(2): 152−160. doi: 10.3878/j.issn.1006-9895.1999.02.03
    [49] Trenberth K E. 1995. Atmospheric circulation climate changes [J]. Climatic Change, 31(2-4): 427−453. doi: 10.1007/BF01095156
    [50] Van Loon H, Rogers J C. 1978. The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description [J]. Mon. Wea. Rev., 106(3): 296−310. doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2
    [51] Watanabe M. 2004. Asian jet waveguide and a downstream extension of the North Atlantic Oscillation [J]. J. Climate, 17(24): 4674−4691. doi: 10.1175/JCLI-3228.1
    [52] 许蓓, 陈海山, 高楚杰. 2015. 冬季雪深再分析资料在欧亚中高纬地区的适用性评价 [J]. 气候与环境研究, 20(3): 296−306. doi:  10.3878/j.issn.1006-9585.2014.14164

    Xu Bei, Chen Haishan, Gao Chujie. 2015. Evaluation of the applicability of snow depth reanalysis datasets over the middle-high latitudes of Eurasia in winter [J]. Climatic Environ. Res. (in Chinese), 20(3): 296−306. doi: 10.3878/j.issn.1006-9585.2014.14164
    [53] 杨琨, 武炳义. 2009. 欧亚大陆积雪与亚洲季风关系研究进展 [J]. 气象科技, 37(3): 263−270. doi:  10.3969/j.issn.1671-6345.2009.03.002

    Yang Kun, Wu Bingyi. 2009. Advances in researches on relationship between Eurasia snowcover and Asian monsoon [J]. Meteor. Sci. Technol. (in Chinese), 37(3): 263−270. doi: 10.3969/j.issn.1671-6345.2009.03.002
    [54] Ye D C, Guan Z Y, Jin D C. 2019. Climatic features of summertime baroclinic wave packets over Eurasia and the associated possible impacts on precipitation in southern China [J]. Atmos. Sci. Lett., 20(4): e889. doi: 10.1002/asl.889
    [55] Ye K H, Wu R G, Liu Y. 2015. Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s [J]. J. Geophys. Res., 120(7): 2738−2753. doi: 10.1002/2015JD023148
    [56] Zhang J, Tang Q, Chen H S, et al. 2017. Northward shift in circulation system over the Asian mid-latitudes linked to an increasing heating anomaly over the northern Tibetan Plateau during the past two decades [J]. Int. J. Climatol., 37(2): 834−848. doi: 10.1002/joc.4743
    [57] Zhang J, Chen H S, Zhang Q. 2019. Extreme drought in the recent two decades in northern China resulting from Eurasian warming [J]. Climate Dyn., 52(5): 2885−2902. doi: 10.1007/s00382-018-4312-2
    [58] 张人禾, 武炳义, 赵平, 等. 2008. 中国东部夏季气候20世纪80年代后期的年代际转型及其可能成因 [J]. 气象学报, 66(5): 697−706. doi:  10.11676/qxxb2008.064

    Zhang Renhe, Wu Bingyi, Zhao Ping, et al. 2008. The decadal shift of the summer climate in the late 1980s over East China and its possible causes [J]. Acta Meteor. Sinica (in Chinese), 66(5): 697−706. doi: 10.11676/qxxb2008.064
    [59] 张人禾, 张若楠, 左志燕. 2016. 中国冬季积雪特征及欧亚大陆积雪对中国气候影响 [J]. 应用气象学报, 27(5): 513−526. doi:  10.11898/1001-7313.20160501

    Zhang Renhe, Zhang Ruonan, Zuo Zhiyan. 2016. An overview of wintertime snow cover characteristics over china and the impact of Eurasian snow cover on Chinese climate [J]. J. Appl. Meteor. Sci. (in Chinese), 27(5): 513−526. doi: 10.11898/1001-7313.20160501
    [60] 赵永平, McBean G A. 1996. 黑潮海域海洋异常加热对后期北半球大气环流影响的分析 [J]. 海洋与湖沼, 27(3): 246−250. doi:  10.3321/j.issn:0029-814X.1996.03.003

    Zhao Yongping, McBean G A. 1996. Influence of the Kuroshio region marine heating anomaly on the north hemisphere atmospheric circulation in the following seasons [J]. Oceanol. Limnol. Sinica (in Chinese), 27(3): 246−250. doi: 10.3321/j.issn:0029-814X.1996.03.003
    [61] Zuo Z Y, Zhang R H, Wu B Y, et al. 2012. Decadal variability in springtime snow over Eurasia: Relation with circulation and possible influence on springtime rainfall over China [J]. Int. J. Climatol., 32(9): 1336−1345. doi: 10.1002/joc.2355
  • [1] 宫湛秋, 孙诚, 李建平, 冯娟, 谢飞, 杨韵, 薛佳庆.  基于信息流理论的因果分析在辨析大西洋多年代际振荡物理机制中的应用, 大气科学. doi: 10.3878/j.issn.1006-9895.1810.18181
    [2] 周星妍, 朱伟军, 顾聪.  冬季北大西洋风暴轴异常对我国寒潮活动的可能影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1501.14259
    [3] 董元昌, 李国平.  大气能量学揭示的高原低涡个例结构及降水特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1502.14263
    [4] 卢楚翰, 管兆勇, 李震坤, 金大超, 秦育婧.  春季欧亚大陆积雪对春夏季南北半球大气质量交换的可能影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1405.13289
    [5] 左志燕, 张人禾.  中国春季降水异常及其与热带太平洋海面温度和欧亚大陆积雪的联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.01.14
    [6] 李忠燕, 罗德海.  北大西洋涛动位相转换的数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.11055
    [7] 冯蕾, 魏凤英, 朱艳峰.  基于前春对流层温度和北大西洋涛动的中国夏季降水统计预测模型, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.05.15
    [8] 张冬斌, 金飞飞, 李建平, 等.  瞬变天气涡旋对北大西洋涛动的增强效应, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.05.12
    [9] 柴晶品, 刁一娜.  北大西洋涛动指数变化与北半球冬季阻塞活动, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.02.11
    [10] 谭桂容, 陈海山, 孙照渤, 等.  2008年1月中国低温与北大西洋涛动和平流层异常活动的联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.01.16
    [11] 杨莲梅, 张庆云.  北大西洋涛动对新疆夏季降水异常的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2008.05.16
    [12] 李建, 周天军, 宇如聪.  利用大气环流模式模拟北大西洋海温异常强迫响应, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.04.01
    [13] 肖子牛, 梁红丽.  2004年夏季经向型雨带及其与印度洋偶极模异常海温的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.08
    [14] 邹捍, 李鹏, 周立波, 马舒坡, 季崇萍.  北大西洋臭氧极小值和北太平洋极大值及其相互关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.19
    [15] 张苏平, 李春, 白燕, 雷小途.  一次北方台风暴雨(9406)能量特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.04.10
    [16] 周立波, 邹捍, 季崇萍, 吴瑞欢.  斯堪的纳维亚上空的臭氧亏损与北大西洋海温, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.02.11
    [17] 陈兴芳, 宋文玲.  冬季高原积雪和欧亚积雪对我国夏季旱涝不同影响关系的环流特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.05.02
    [18] 龚道溢, 王绍武.  北大西洋涛动指数的比较及其年代际变率, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.02.07
    [19] 武炳义, 黄荣辉.  冬季北大西洋涛动极端异常变化与东亚冬季风, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.06.01
    [20] 龚晓峰, M.B.Richman.  主分量分析在区域性气候分型中应用的统计试验研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1992.06.02
  • 加载中
图(12) / 表ll (2)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  3
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-10
  • 网络出版日期:  2020-04-01
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回