高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引发强降水的一次东移高原云团的能量演变特征研究

周文 王晓芳 傅慎明 张金玲 韩晓宁 陈政道

周文, 王晓芳, 傅慎明, 等. 2020. 引发强降水的一次东移高原云团的能量演变特征研究[J]. 大气科学, 44(4): 885−898 doi:  10.3878/j.issn.1006-9895.1912.19213
引用本文: 周文, 王晓芳, 傅慎明, 等. 2020. 引发强降水的一次东移高原云团的能量演变特征研究[J]. 大气科学, 44(4): 885−898 doi:  10.3878/j.issn.1006-9895.1912.19213
ZHOU Wen, WANG Xiaofang, FU Shenming, et al. 2020. Energy Evolution Characteristics of an Eastward-Moving Convective Cloud Cluster Originating from the Tibetan Plateau That Produces Heavy Precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 885−898 doi:  10.3878/j.issn.1006-9895.1912.19213
Citation: ZHOU Wen, WANG Xiaofang, FU Shenming, et al. 2020. Energy Evolution Characteristics of an Eastward-Moving Convective Cloud Cluster Originating from the Tibetan Plateau That Produces Heavy Precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 885−898 doi:  10.3878/j.issn.1006-9895.1912.19213

引发强降水的一次东移高原云团的能量演变特征研究

doi: 10.3878/j.issn.1006-9895.1912.19213
基金项目: 国家自然基金项目91637211、41975058、41620104009、41775046,国家重点研究发展计划项目2018YFC1507200
详细信息
    作者简介:

    周文,女,1993年出生,硕士、助理工程师,主要从事暴雨机理研究。E-mail: zhouwen@nuist.edu.cn

    通讯作者:

    傅慎明,E-mail: fusm@mail.iap.ac.cn

  • 中图分类号: P458

Energy Evolution Characteristics of an Eastward-Moving Convective Cloud Cluster Originating from the Tibetan Plateau That Produces Heavy Precipitation

Funds: National Nature Science Foundation of China (Grants 91637211, 41975058, 41620104009, 41775046), National Key Research and Development Plan of China (Grant 2018YFC1507200)
  • 摘要: 利用日本气象厅葵花-8卫星亮温资料、欧洲中心ERA5(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)再分析资料,根据时间尺度分解的局地能量诊断方法,本文从能量学多个角度研究了2016年6月5日00时(协调世界时,下同)至6日15时(持续40小时)一次东移并引发强降水的高原对流云团,得到了以下主要结论。本次事件中,高原东移对流云团在不同阶段的主要影响系统有所不同。移出高原前,其主要受高原涡和高原短波槽的共同影响,随着云团移出高原,高原涡消亡,而高原短波槽则随时间发展加强,成为东移云团的最主要影响系统。高原东移对流云团具有显著的深对流特征,自西向东引发了一系列的降水,移出高原后,其对流重心显著降低,降水达到最强。不同阶段高原东移对流云团的能量转换特征显著不同。云团位于高原上时(第一阶段),背景场通过动能的降尺度能量级串为造成强降水的扰动流直接提供能量,这是此阶段扰动流动能维持的主要方式;云团移出高原过程中(第二阶段),降水凝结潜热明显增强,由此制造的扰动有效位能也显著增强。在垂直运动配合下,扰动有效位能斜压释放所制造的动能是本阶段造成强降水扰动流动能维持的最主要能量来源;云团移出高原后(第三阶段),背景场对造成强降水扰动流的影响再次增强,但是不同于第一阶段的直接影响方式,该阶段背景场的作用是以一种间接的影响方式出现。其首先通过有效位能的降尺度级串将背景场的有效位能转换为扰动流的有效位能,然后通过扰动有效位能的斜压能量释放为扰动流的动能维持不断地提供能量。此外,本阶段内还出现了扰动流向背景场动能的升尺度级串供给(即扰动流的反馈),但其强度不足以对背景场的演变产生显著影响。
  • 图  1  2016年6月5日15:00(协调世界时,下同)至6日15:50云团东移过程中不同时刻TBB(单位:°C)水平分布。棕色实线代表青藏高原3000 m地形高度等值线,黑色圆圈区域代表目标云团,红色虚线圈区域代表即将分裂或合并的云团

    Figure  1.  Horizontal distribution of TBB (Black Body Temperature, units: °C) in the eastward-moving process of cloud cluster from 1500 UTC 5 June to 1550 UTC 6 June 2016. The solid brown lines represent the 3000-m terrain height contours of Tibetan Plateau, the regions of the black circles represent target cloud, the regions of the red dashed circles represent cloud cluster ready to split or merge

    图  2  (a)2016年6月5日15时至6日15时经向(31°~34°N)平均的TBB(单位:°C)及小时降水量(阴影,单位:mm h−1)时间—经度剖面。(b)2016年6月5日15~23时(第一阶段,蓝色虚线圈区域代表降水大值区)、(c)2016年6月5日23时至6月6日07时(第二阶段)、(d)2016年6月6日07~15时(第三阶段)平均的TBB(单位:°C)及8 h累积降水量(阴影,单位:mm)空间分布。蓝、红、黑色实线分别为−22°C、−32°C、−42°C的TBB,小时降水量数据为CMORPH(Climate Prediction Center MORPHing)卫星反演降水产品

    Figure  2.  (a) Time–longitude cross section of meridional (31°–34°N) mean TBB (units: °C) and precipitation (shadings, units: mm h−1) from 1500 UTC 5 June to 1500 UTC 6 June 2016. Spatial distribution of average TBB (units: °C) and 8-h cumulative precipitation (shadings, units: mm) during (b) 1500–2300 UTC 5 June 2016 (the first stage, the regions of the blue dashed circles represent zones with large precipitation), (c) 2300 UTC 5 June to 0700 UTC 6 June 2016 (the second stage), (d) 0700–1500 UTC 6 June 2016 (the third stage). The blue, red, and black lines represent TBB at −22°C, −32°C and −42°C, respectively. The hourly precipitation data were obtained from CMORPH (Climate Prediction Center MORPHing) satellite inversion of precipitation products

    图  3  (a、d)第一阶段、(b、e)第二阶段、(c、f)第三阶段8 h平均的(a–c)TBB(单位:°C,蓝、棕、黑色实线分别为−22°C、−32°C、−42°C)、450 hPa流场(灰色带箭头实线)、450 hPa上升速度(阴影,单位:Pa s−1)及200 hPa高空急流(粉色实线,等值线间隔为5 m s−1,单位:m s−1)空间分布,(d–f)500 hPa位势高度场(灰色实线,单位:dagpm)、500 hPa辐合场(阴影,单位:10−5 s−1)、200 hPa辐散场(单位:10−5 s−1,绿、橘、红色实线分别代表2×10−5 s−1、6×10−5 s−1、8×10−5 s−1)、−32°C的TBB(黑色实线),棕色实线为槽线

    Figure  3.  8-h averaged (a–c) TBB (units: °C, blue, brown, and black lines represent −22°C, −32°C and −42°C, respectively), 450-hPa stream field (gray lines with arrows), 450-hPa ascent speed (shadings, units: Pa s−1), and 200-hPa upper-level jet (pink lines, the contours interval is 5 m s−1, units: m s−1), 8-h averaged (d–f) 500-hPa geopotential height (gray solid lines, units: dagpm), 500-hPa convergence (shadings, units: 10−5 s−1), 200-hPa divergence (units: 10−5 s−1, the green, orange, and red solid lines represent 2×10−5 s−1, 6×10−5 s−1, 8×10−5 s−1, respectively), and TBB at −32°C (black solid lines) during (a, d) the first stage, (b, e) the second stage, (c, f) the third stage. In Figs. d–f, the brown solid lines represent the trough line

    图  4  (a)经向(31°~34°N)平均的350~550 hPa垂直平均扰动动能(阴影,单位:J kg−1)及TBB(黑、棕、粉色实线分别为−22°C、−32°C和−42°C)时间—经度剖面。(b)第一阶段350~550 hPa、(c)第二阶段350~550 hPa、(d)第三阶段350~550 hPa、(e)第三阶段600~800 hPa的8 h平均的垂直积分扰动动能(阴影,单位:J m−2)、流场(灰色带箭头实线)、位势高度场(绿色实线,单位:dagpm)、TBB(黑、棕、粉色实线分别为−22°C、−32°C和−42°C)空间分布。图e中灰色阴影为750 hPa地形高度

    Figure  4.  (a) Time–longitude cross section of meridional (31°–34°N) mean eddy kinetic energy (shadings, units: J kg−1) and TBB (black, brown, and pink lines represent −22°C, −32°C, and −42°C, respectively). Spatial distribution of 8-h averaged vertical integral eddy kinetic energy (shadings, units: J m−2), flow field (gray lines with arrows), geopotential height (green lines, units: dagpm), TBB (black, brown, and pink lines represent −22°C, −32°C, and −42°C, respectively) during (b) the first stage at 350–550 hPa, (c) the second stage at 350–550 hPa, (d) the third stage at 350–550 hPa, (e) during the third stage at 600–800 hPa. In Fig. e, the gray area represents 750-hPa terrain height

    图  5  2016年6月5日15时至6日15时对流云团覆盖区内扰动动能(阴影,单位:J kg−1)、小时降水量(柱状,单位:mm h−1)、对流强度(红色实线,用TBB小于−52°C格点数目代表对流强度)变化特征。黑色实(虚)线为云团平均纬(经)度

    Figure  5.  Variation characteristics of eddy kinetic energy (shadings, units: J kg−1), hourly precipitation (bars, units: mm h−1), and convection intensity (red solid line, the convection intensity is indicated by grid numbers in the target area that satisfies TBB≤−52°C) from 1500 UTC 5 June to 1500 UTC 6 June 2016. The black solid (dashed) line represents the average latitude (longitude) of the cloud

    图  6  云团第一阶段350~550 hPa垂直积分的能量收支项(阴影,单位:W m−2):(a)KMKI的能量转换率;(b)KIKT的能量转换率;(c)相互作用流动能的三维输送。黑、棕、粉色实线分别为−22°C、−32°C、−42°C的TBB

    Figure  6.  Vertical integral of energy budget terms (shadings, units: W m−2) in the first stage of cloud lifespan for 350–550 hPa: (a) Energy transferring rate from KM (the kinetic energy of background circulations) to KI (the kinetic energy of interaction); (b) energy transferring rate from KI to KT (the kinetic energy of eddy flows); (c) three dimensional transportation of KI. The black, brown, and pink lines represent TBB at −22°C, −32°C, and −42°C, respectively

    图  7  云团第二阶段350~550 hPa垂直积分的能量收支项(阴影,单位:W m−2):(a)KMKI的能量转换率;(b)KIKT的能量转换率;(c)绝热产生率;(d)ATKT的能量转换率。黑、棕、粉色实线分别为−22°C、−32°C和−42°C的TBB

    Figure  7.  Vertical integral of energy budget terms (shadings, units: W m−2) in the second stage of cloud lifespan for 350–550 hPa: (a) Energy transferring rate from KM to KI; (b) energy transferring rate from KI to KT; (c) diabatic generation rate of AT (the available potential energy of the eddy flows); (d) energy transferring rate from AT to KT. The black, brown, and pink lines represent TBB at −22°C, −32°C, and −42°C, respectively

    图  8  云团第三阶段350~550 hPa垂直积分的能量收支项(阴影,单位:W m−2):(a)KT的边界通量;(b)KIKT的能量转换率。黑色、棕色、深粉色实线分别为−22°C、−32°C和−42°C的TBB

    Figure  8.  Vertical integral of energy budget terms (shadings, units: W m−2) in the third stage of cloud lifespan for 350–550 hPa: (a) Boundary fluxes of KT; (b) energy transferring rate from KI to KT. The black, brown, and deep pink lines represent TBB at −22°C, −32°C, and −42°C, respectively

    图  9  云团第三阶段600~800 hPa垂直积分的能量收支项(阴影,单位:W m−2):(a)KMKI的能量转换率;(b)AMAI的能量转换率;(c)AMKM的能量转换率;(d)KIKT的能量转换率;(e)AIAT的能量转换率;(f)ATKT的能量转换率。黑色、棕色、深粉色实线分别为−22°C、−32°C和−42°C的TBB

    Figure  9.  Vertical integral of energy budget terms (shadings, units: W m−2) in the third stage of cloud lifespan for 600–800 hPa: (a) Energy transferring rate from KM to KI; (b) energy transferring rate from AM (the available potential energy of background circulations) to AI (the available potential energy of interaction); (c) energy transferring rate from AM to KM; (d) energy transferring rate from KI to KT; (e) energy transferring rate from AI to AT; (f) energy transferring rate from AT to KT. The black, brown, and deep pink lines represent TBB at −22°C, −32°C, and −42°C, respectively

    图  10  云团第三阶段600~800 hPa能量转换路径示意图

    Figure  10.  Diagrammatic sketch of energy transferring path in the third stage of cloud lifespan at 600–800 hPa

  • [1] 费增坪, 王洪庆, 张焱, 等. 2011. 基于静止卫星红外云图的MCS自动识别与追踪 [J]. 应用气象学报, 22(1): 115−122. doi:  10.3969/j.issn.1001-7313.2011.01.012

    Fei Zengping, Wang Hongqing, Zhang Yan, et al. 2011. MCS identification and tracking based on geo-satellite IR images [J]. Journal of Applied Meteorological Science (in Chinese), 22(1): 115−122. doi: 10.3969/j.issn.1001-7313.2011.01.012
    [2] 傅慎明, 孙建华, 赵思雄, 等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究 [J]. 气象学报, 69(4): 581−600.

    Fu Shenming, Sun Jianhua, Zhao Sixiong, et al. 2011. A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze-Huai River basin [J]. Acta Meteorologica Sinica (in Chinese), 69(4): 581−600.
    [3] Fu S M, Yu F, Wang D H, et al. 2013. A comparison of two kinds of eastward-moving mesoscale vortices during the Mei-yu period of 2010 [J]. Science China: Earth Sciences, 56(2): 282−300. doi: 10.1007/s11430-012-4420-5
    [4] Fu S M, Wang H J, Sun J H, et al. 2016a. Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010 [J]. Journal of Meteorological Research, 30(4): 513−527. doi: 10.1007/s13351-016-5121-3
    [5] Fu S M, Sun J H, Ling J, et al. 2016b. Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season [J]. J. Geophys. Res., 121(21): 12856−12876. doi: 10.1002/2016JD025446
    [6] Fu S M, Liu R X, Sun J H. 2018. On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis [J]. J. Atmos. Sci., 75(3): 907−925. doi: 10.1175/jas-d-17-0294.1
    [7] Fujinami H, Yasunari T. 2001. The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau [J]. J. Meteor. Soc. Japan, 79(6): 1207−1227. doi: 10.2151/jmsj.79.1207
    [8] 过仲阳, 林珲, 江吉喜, 等. 2003. 青藏高原上中尺度对流系统东移传播成因 [J]. 地球信息科学学报, 5(1): 5−10. doi:  10.3969/j.issn.1560-8999.2003.01.002

    Guo Zhongyang, Lin Hui, Jiang Jixi, et al. 2003. Mining eastward-moving MCSs features over the Tibetan Plateau [J]. Geo-information Science (in Chinese), 5(1): 5−10. doi: 10.3969/j.issn.1560-8999.2003.01.002
    [9] Hoffmann L, Günther G, Li D, et al. 2019. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next generation reanalysis on Lagrangian transport simulations [J]. Atmospheric Chemistry and Physics, 19(5): 3097−3124. doi: 10.5194/acp-19-3097-2019
    [10] 胡亮, 李耀东, 付容, 等. 2008. 夏季青藏高原移动性对流系统与中国东部降水的相关关系 [J]. 高原气象, 27(2): 301−309.

    Hu Liang, Li Yaodong, Fu Rong, et al. 2008. The relationship between mobile mesoscale convective systems over Tibetan Plateau and the rainfall over eastern China in summer [J]. Plateau Meteorology (in Chinese), 27(2): 301−309.
    [11] 江吉喜, 范梅珠. 2002. 夏季青藏高原上的对流云和中尺度对流系统 [J]. 大气科学, 26(2): 263−270. doi:  10.3878/j.issn.1006-9895.2002.02.12

    Jiang Jixi, Fan Meizhu. 2002. Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(2): 263−270. doi: 10.3878/j.issn.1006-9895.2002.02.12
    [12] Li D S, Sun J H, Fu S M, et al. 2016. Spatiotemporal characteristics of hourly precipitation over central eastern China during the warm season of 1982−2012 [J]. International Journal of Climatology, 36(8): 3148−3160. doi: 10.1002/joc.4543
    [13] Murakami S. 2011. Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory [J]. J. Atmos. Sci., 68(4): 760−768. doi: 10.1175/2010JAS3664.1
    [14] Murakami S, Ohgaito R, Abe-Ouchi A. 2011. Atmospheric local energetics and energy interactions between mean and eddy fields. Part II: An example for the last glacial maximum climate [J]. J. Atmos. Sci., 68(3): 533−552. doi: 10.1175/2010JAS3583.1
    [15] 陶诗言. 1980. 中国之暴雨 [M]. 北京: 科学出版社, 225pp.

    Tao Shiyan. 1980. Rainstorms in China (in Chinese) [M]. Beijing: Science Press, 225pp.
    [16] 田珊儒, 段安民, 王子谦, 等. 2015. 地面加热与高原低涡和对流系统相互作用的一次个例研究 [J]. 大气科学, 39(1): 125−136. doi:  10.3878/j.issn.1006-9895.1404.13311

    Tian Shanru, Duan Anmin, Wang Ziqian, et al. 2015. Interaction of surface heating, the Tibetan Plateau vortex, and a convective system: A case study [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(1): 125−136. doi: 10.3878/j.issn.1006-9895.1404.13311
    [17] 王婧羽, 王晓芳, 汪小康, 等. 2019. 青藏高原云团东传过程及其中尺度对流系统的统计特征 [J]. 大气科学, 43(5): 1019−1040. doi:  10.3878/j.issn.1006-9895.1812.18167

    Wang Jingyu, Wang Xiaofang, Wang Xiaokang, et al. 2019. Statistical characteristics of eastward propagation of cloud clusters from the Tibetan Plateau and mesoscale convective systems embedded in these cloud clusters [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1019−1040. doi: 10.3878/j.issn.1006-9895.1812.18167
    [18] Yasunari T, Miwa T. 2006. Convective cloud systems over the Tibetan Plateau and their impact on mesoscale disturbances in the Meiyu/Baiu frontal zone [J]. J. Meteor. Soc. Japan, 84(4): 783−803. doi: 10.2151/jmsj.84.783
    [19] 张顺利, 陶诗言, 张庆云, 等. 2001. 1998年夏季中国暴雨洪涝灾害的气象水文特征 [J]. 应用气象学报, 12(4): 442−457. doi:  10.3969/j.issn.1001-7313.2001.04.007

    Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2001. Meteorological and hydrological characteristics of severe flooding in China during the summer of 1998 [J]. Quarterly Journal of Applied Meteorology (in Chinese), 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007
    [20] Zhang Y C, Sun J H, Fu S M. 2017. Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River−Huaihe River basin [J]. Advances in Atmospheric Sciences, 34(2): 129−143. doi: 10.1007/s00376-016-6117-8
    [21] 赵思雄, 陶祖钰, 孙建华, 等. 2004. 长江流域梅雨锋暴雨机理的分析研究 [M]. 北京: 气象出版社.

    Zhao Sixiong, Tao Zuyu, Sun Jianhua, et al. 2004. Study on Mechanism of Formation and Development of Heavy Rainfalls on Meiyu Front in Yangtze River (in Chinese) [M]. Beijing: China Meteorological Press.
    [22] Zheng Y G, Chen J, Ge G Q, et al. 2008. Typical structure, variety, and multi-scale characteristics of Meiyu front [J]. Acta Meteorologica Sinica, 22(2): 187−201.
    [23] 朱乾根, 林锦瑞, 寿绍文, 等. 2000. 天气学原理和方法 [M]. 3版. 北京: 气象出版社.

    Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. 2000. The Methods and Principles of Synoptic Meteorology (in Chinese) [M]. 3rd ed. Beijing: China Meteorological Press.
    [24] 卓嘎, 徐祥德, 陈联寿. 2002. 青藏高原对流云团东移发展的不稳定特征 [J]. 应用气象学报, 13(4): 448−456. doi:  10.3969/j.issn.1001-7313.2002.04.008

    Zhuo Ga, Xu Xiangde, Chen Lianshou. 2002. Instability of eastward movement and development of convective cloud clusters over Tibetan Plateau [J]. Journal of Applied Meteorological Science (in Chinese), 13(4): 448−456. doi: 10.3969/j.issn.1001-7313.2002.04.008
  • [1] 马婷, 刘屹岷, 吴国雄, 毛江玉, 张冠舜.  青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1904.18275
    [2] 马琴, 刘新, 李伟平, 丁宝弘.  青藏高原夏季土壤有机质及砾石影响水热传输特性的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.2013.13119
    [3] 何钰, 李国平.  青藏高原大地形对华南持续性暴雨影响的数值试验, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12102
    [4] 董佩明, 赵思雄.  引发梅雨锋暴雨的频发型中尺度低压(扰动)的诊断研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.06.07
    [5] 李跃清.  青藏高原地面加热及上空环流场与东侧旱涝预测的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2003.01.10
    [6] 刘新, 吴国雄, 刘屹岷, 刘平.  青藏高原加热与亚洲环流季节变化和夏季风爆发, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.06.07
    [7] 李国平, 赵邦杰, 杨锦青.  地面感热对青藏高原低涡流场结构及发展的作用, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.04.09
    [8] 李伟平, 吴国雄, 刘屹岷, 刘新.  青藏高原表面过程对夏季青藏高压的影响--数值试验, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.06.08
    [9] 卞林根, 陆龙骅, 逯昌贵, 陈彦杰, 高志球, 刘辉志, 张宏升, 陈家宜.  1998年夏季青藏高原辐射平衡分量特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.05.01
    [10] 刘晓东, 焦彦军.  东亚季风气候对青藏高原隆升的敏感性研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.05.03
    [11] 王宝灵, 谢金南, 吴国雄, 俞亚勋.  青藏高原东北侧汛期降水若干问题研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.06.05
    [12] 郑益群, 钱永甫, 苗曼倩, 季劲钧.  青藏高原积雪对中国夏季风气候的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.06.04
    [13] 刘辉志, 洪钟祥.  青藏高原改则地区近地层湍流特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.03.01
    [14] 苏文颖, 毛节泰, 纪飞.  青藏高原出射长波辐射特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.03.03
    [15] 李跃清.  1998年青藏高原东侧边界层风场与长江暴雨洪水的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.05.08
    [16] 李家伦, 洪钟祥, 罗卫东, 李爱国, 赵翼浚.  青藏高原改则地区近地层通量观测研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.02.02
    [17] 陈伯民, 钱正安, 张立盛.  夏季青藏高原低涡形成和发展的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1996.04.14
    [18] 陈伯民, 钱正安.  夏季青藏高原地区降水和低涡的数值预报试验, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.01.07
    [19] 章基嘉, 徐祥德, 苗峻峰.  青藏高原地面热力异常对夏季江淮流域持续暴雨形成作用的数值试验, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.03.02
    [20] 孙国武, 陈葆德.  青藏高原大气低频振荡与低涡群发性的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.01.14
  • 加载中
图(10)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  6
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 网络出版日期:  2020-01-22
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回